TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains

Authorized Users Only
2019
Authors
Tadić, Marin
Kralj, Slavko
Kopanja, Lazar
Article (Published version)
Metadata
Show full item record
Abstract
We report monodisperse, chain-like particles (nanochains) consisted of silica-coated maghemite (γ-Fe2O3) nanoparticle clusters prepared by colloidal chemistry and magnetic field-induced self-assembly of nanoparticle clusters. In order to quantify the shapes of chain-like particles, we have used the measure for shape convexity which is also called solidity. We functionalize the surface of the nanochains with amino (–NH2) and carboxyl groups (–COOH) in order to modify surface charge. These surfaces of nanochains provide better colloidal stability and their potential for practical applications in biomedicine. The enhanced colloidal stability of the surface modified nanochains is confirmed by Zeta potential (ζ-potential) analysis. Magnetic properties of the nanochains show superparamagnetic state at room temperature since the nanochains are composed of tiny nanoparticles as their building blocks. The measured M(H) data at room temperature have been successfully fitted by the Langevin funct...ion and magnetic moment μp = 20,526 μB for sphere-like nanoparticle clusters and μp = 20,767 μB for nanochains are determined. The determined magnetic parameters have revealed that the nanochains show a magnetic moment of the nanoparticles higher than the one of individual nanoparticle clusters. These differences can be attributed to the collective magnetic properties of superparamagnetic iron oxide nanoparticles (SPION) assembled in different morphologies (isotropic and anisotropic morphology). © 2018

Keywords:
Image analysis / Shape anisotropy / Iron oxide / maghemite / Synthesis / Superparamagnetism (SPION) / Chemical surface coating
Source:
Materials Characterization, 2019, 148, 123-133
Funding / projects:
  • Magnetic and radionuclide labeled nanostructured materials for medical applications (RS-45015)
  • Development of new information and communication technologies, based on advanced mathematical methods, with applications in medicine, telecommunications, power systems, protection of national heritage and education (RS-44006)
  • Serbia-Slovakia bilateral project 2017-2018 (SK-SR-2016-0055)
  • Serbia-Belarus 2018-2019 (451-03-003036/2017-09/06)
  • Slovenian Research Agency for research core funding (P2-0089)
  • Slovenian Research Agency “Nanotheranostics based on magneto-responsive materials” (No. J1-7302)
  • Slovenian Research Agency “Tunnelling nanotubes for innovative urinary bladder cancer treatments” (No. J3-7494 )

DOI: 10.1016/j.matchar.2018.12.014

ISSN: 1044-5803

WoS: 000458228100014

Scopus: 2-s2.0-85058621696
[ Google Scholar ]
45
29
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5911
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Tadić, Marin
AU  - Kralj, Slavko
AU  - Kopanja, Lazar
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5911
AB  - We report monodisperse, chain-like particles (nanochains) consisted of silica-coated maghemite (γ-Fe2O3) nanoparticle clusters prepared by colloidal chemistry and magnetic field-induced self-assembly of nanoparticle clusters. In order to quantify the shapes of chain-like particles, we have used the measure for shape convexity which is also called solidity. We functionalize the surface of the nanochains with amino (–NH2) and carboxyl groups (–COOH) in order to modify surface charge. These surfaces of nanochains provide better colloidal stability and their potential for practical applications in biomedicine. The enhanced colloidal stability of the surface modified nanochains is confirmed by Zeta potential (ζ-potential) analysis. Magnetic properties of the nanochains show superparamagnetic state at room temperature since the nanochains are composed of tiny nanoparticles as their building blocks. The measured M(H) data at room temperature have been successfully fitted by the Langevin function and magnetic moment μp = 20,526 μB for sphere-like nanoparticle clusters and μp = 20,767 μB for nanochains are determined. The determined magnetic parameters have revealed that the nanochains show a magnetic moment of the nanoparticles higher than the one of individual nanoparticle clusters. These differences can be attributed to the collective magnetic properties of superparamagnetic iron oxide nanoparticles (SPION) assembled in different morphologies (isotropic and anisotropic morphology). © 2018
T2  - Materials Characterization
T1  - Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains
EP  - 133
SP  - 123
VL  - 148
DO  - 10.1016/j.matchar.2018.12.014
ER  - 
@article{
author = "Tadić, Marin and Kralj, Slavko and Kopanja, Lazar",
year = "2019",
abstract = "We report monodisperse, chain-like particles (nanochains) consisted of silica-coated maghemite (γ-Fe2O3) nanoparticle clusters prepared by colloidal chemistry and magnetic field-induced self-assembly of nanoparticle clusters. In order to quantify the shapes of chain-like particles, we have used the measure for shape convexity which is also called solidity. We functionalize the surface of the nanochains with amino (–NH2) and carboxyl groups (–COOH) in order to modify surface charge. These surfaces of nanochains provide better colloidal stability and their potential for practical applications in biomedicine. The enhanced colloidal stability of the surface modified nanochains is confirmed by Zeta potential (ζ-potential) analysis. Magnetic properties of the nanochains show superparamagnetic state at room temperature since the nanochains are composed of tiny nanoparticles as their building blocks. The measured M(H) data at room temperature have been successfully fitted by the Langevin function and magnetic moment μp = 20,526 μB for sphere-like nanoparticle clusters and μp = 20,767 μB for nanochains are determined. The determined magnetic parameters have revealed that the nanochains show a magnetic moment of the nanoparticles higher than the one of individual nanoparticle clusters. These differences can be attributed to the collective magnetic properties of superparamagnetic iron oxide nanoparticles (SPION) assembled in different morphologies (isotropic and anisotropic morphology). © 2018",
journal = "Materials Characterization",
title = "Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains",
pages = "133-123",
volume = "148",
doi = "10.1016/j.matchar.2018.12.014"
}
Tadić, M., Kralj, S.,& Kopanja, L.. (2019). Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains. in Materials Characterization, 148, 123-133.
https://doi.org/10.1016/j.matchar.2018.12.014
Tadić M, Kralj S, Kopanja L. Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains. in Materials Characterization. 2019;148:123-133.
doi:10.1016/j.matchar.2018.12.014 .
Tadić, Marin, Kralj, Slavko, Kopanja, Lazar, "Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains" in Materials Characterization, 148 (2019):123-133,
https://doi.org/10.1016/j.matchar.2018.12.014 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB