TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The evaluation of the antioxidant potential during the oxidative polymerization of polyphenol compounds induced by laccase enzyme

Thumbnail
2021
Abstract, Ilić et al. (337.5Kb)
Authors
Ilić, Nevena
Milić, Marija
Davidović, Slađana
Mihajlovski, Katarina
Dimitrijević-Branković, Suzana
Conference object (Published version)
Metadata
Show full item record
Abstract
The polymerization and crosslinking of various phenolic compounds induced by the laccase enzyme have been in recent years increasingly used in food industry, due to the emergence of products with improved properties, especially with increased antioxidant activity. In this regard, this study has explored the laccase-induced structural changes of two types of naturally occurring polyphenols, named gallic acid and epigallocatechin gallate, and their antioxidant activity. In the first part, the effect of the laccase of different origin - laccase of white rot fungi (Ganoderma spp.), previously grown on waste cereals and commercial laccase from Novozym® 51003, were investigated. Based on the results obtained after incubation (24 h, 50ºC), the sample containing a mixture of polyphenols, rather than individually, gave visible changes in the reading of the UV-Vis spectrum and increased antioxidant activity with small differences between commercial laccase and laccase of white rot fungi, which i...ndicates that laccase obtained by growing fungi on waste cereals may be competitive for such a purpose. Moreover, the use of such an obtained laccase is more environmentally friendly and economically viable than use of commercial one. Further process optimization of polyphenols polymerization was performed within the method of multifactor statistical analysis (Design Expert), by using of commercial laccase, where by the effect of enzyme concentrations (0.1, 0.3 and 0.5 U/ml) and incubation time (4, 14 and 24 h) were monitored. The maximal antioxidant activity, measured by both DPPH (inhibition of 58.58% of radicals) and FRAP (176.57 mmol Fe2+/ml) was achieved by a sample containing a mixture of polyphenols and 0.3 U/ml laccase enzymes, after 14 h, at 50˚C. The results of this study revealed that careful optimization of process variables during polyphenols polymerization is extremely important for obtaining the product with desirable value added properties, which may be implemented in food and pharmaceutical industry.

Keywords:
laccase, oxidative polymerization, polyphenols, white rot fungi, agroindustrial waste
Source:
Book of Abstracts, The 2nd Unifood International Conference-UNIFood Conference 2021, 2021, 158-
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)

ISBN: 978-86-7522-066-4

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_technorep_5939
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5939
Collections
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Inovacioni centar
TY  - CONF
AU  - Ilić, Nevena
AU  - Milić, Marija
AU  - Davidović, Slađana
AU  - Mihajlovski, Katarina
AU  - Dimitrijević-Branković, Suzana
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5939
AB  - The polymerization and crosslinking of various phenolic compounds induced by the laccase enzyme have been in recent years increasingly used in food industry, due to the emergence of products with improved properties, especially with increased antioxidant activity. In this regard, this study has explored the laccase-induced structural changes of two types of naturally occurring polyphenols, named gallic acid and epigallocatechin gallate, and their antioxidant activity. In the first part, the effect of the laccase of different origin - laccase of white rot fungi (Ganoderma spp.), previously grown on waste cereals and commercial laccase from Novozym® 51003, were investigated. Based on the results obtained after incubation (24 h, 50ºC), the sample containing a mixture of polyphenols, rather than individually, gave visible changes in the reading of the UV-Vis spectrum and increased antioxidant activity with small differences between commercial laccase and laccase of white rot fungi, which indicates that laccase obtained by growing fungi on waste cereals may be competitive for such a purpose. Moreover, the use of such an obtained laccase is more environmentally friendly and economically viable than use of commercial one. Further process optimization of polyphenols polymerization was performed within the method of multifactor statistical analysis (Design Expert), by using of commercial laccase, where by the effect of enzyme concentrations (0.1, 0.3 and 0.5 U/ml) and incubation time (4, 14 and 24 h) were monitored. The maximal antioxidant activity, measured by both DPPH (inhibition of 58.58% of radicals) and FRAP (176.57 mmol Fe2+/ml) was achieved by a sample containing a mixture of polyphenols and 0.3 U/ml laccase enzymes, after 14 h, at 50˚C. The results of this study revealed that careful optimization of process variables during polyphenols polymerization is extremely important for obtaining the product with desirable value added properties, which may be implemented in food and pharmaceutical industry.
C3  - Book of Abstracts, The 2nd Unifood International Conference-UNIFood Conference 2021
T1  - The evaluation of the antioxidant potential during the oxidative polymerization of polyphenol compounds induced by laccase enzyme
SP  - 158
UR  - https://hdl.handle.net/21.15107/rcub_technorep_5939
ER  - 
@conference{
author = "Ilić, Nevena and Milić, Marija and Davidović, Slađana and Mihajlovski, Katarina and Dimitrijević-Branković, Suzana",
year = "2021",
abstract = "The polymerization and crosslinking of various phenolic compounds induced by the laccase enzyme have been in recent years increasingly used in food industry, due to the emergence of products with improved properties, especially with increased antioxidant activity. In this regard, this study has explored the laccase-induced structural changes of two types of naturally occurring polyphenols, named gallic acid and epigallocatechin gallate, and their antioxidant activity. In the first part, the effect of the laccase of different origin - laccase of white rot fungi (Ganoderma spp.), previously grown on waste cereals and commercial laccase from Novozym® 51003, were investigated. Based on the results obtained after incubation (24 h, 50ºC), the sample containing a mixture of polyphenols, rather than individually, gave visible changes in the reading of the UV-Vis spectrum and increased antioxidant activity with small differences between commercial laccase and laccase of white rot fungi, which indicates that laccase obtained by growing fungi on waste cereals may be competitive for such a purpose. Moreover, the use of such an obtained laccase is more environmentally friendly and economically viable than use of commercial one. Further process optimization of polyphenols polymerization was performed within the method of multifactor statistical analysis (Design Expert), by using of commercial laccase, where by the effect of enzyme concentrations (0.1, 0.3 and 0.5 U/ml) and incubation time (4, 14 and 24 h) were monitored. The maximal antioxidant activity, measured by both DPPH (inhibition of 58.58% of radicals) and FRAP (176.57 mmol Fe2+/ml) was achieved by a sample containing a mixture of polyphenols and 0.3 U/ml laccase enzymes, after 14 h, at 50˚C. The results of this study revealed that careful optimization of process variables during polyphenols polymerization is extremely important for obtaining the product with desirable value added properties, which may be implemented in food and pharmaceutical industry.",
journal = "Book of Abstracts, The 2nd Unifood International Conference-UNIFood Conference 2021",
title = "The evaluation of the antioxidant potential during the oxidative polymerization of polyphenol compounds induced by laccase enzyme",
pages = "158",
url = "https://hdl.handle.net/21.15107/rcub_technorep_5939"
}
Ilić, N., Milić, M., Davidović, S., Mihajlovski, K.,& Dimitrijević-Branković, S.. (2021). The evaluation of the antioxidant potential during the oxidative polymerization of polyphenol compounds induced by laccase enzyme. in Book of Abstracts, The 2nd Unifood International Conference-UNIFood Conference 2021, 158.
https://hdl.handle.net/21.15107/rcub_technorep_5939
Ilić N, Milić M, Davidović S, Mihajlovski K, Dimitrijević-Branković S. The evaluation of the antioxidant potential during the oxidative polymerization of polyphenol compounds induced by laccase enzyme. in Book of Abstracts, The 2nd Unifood International Conference-UNIFood Conference 2021. 2021;:158.
https://hdl.handle.net/21.15107/rcub_technorep_5939 .
Ilić, Nevena, Milić, Marija, Davidović, Slađana, Mihajlovski, Katarina, Dimitrijević-Branković, Suzana, "The evaluation of the antioxidant potential during the oxidative polymerization of polyphenol compounds induced by laccase enzyme" in Book of Abstracts, The 2nd Unifood International Conference-UNIFood Conference 2021 (2021):158,
https://hdl.handle.net/21.15107/rcub_technorep_5939 .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB