TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of temperature and plastic deformation on AA2024 T3 friction stir welded joint microstructure

Thumbnail
2022
0354-98362200162V.pdf (942.7Kb)
Authors
Veljić, Darko
Rakin, Marko
Sedmak, Aleksandar
Radović, Nenad
Međo, Bojan
Mrdak, Mihailo
Bajić, Darko
Article (Published version)
Metadata
Show full item record
Abstract
This paper deals with analysis and comparison of the equivalent plastic strain and temperature fields in the aluminium alloy 2024 T3 welded joint, with macro/microstructure appearance and hardness profile. In the alloys hardened by heat treatment, grain size and particle size of the precipitate are functions of equivalent plastic strain, strain rate and temperature. By analyzing the equivalent plastic strain fields and temperature fields it is possible, to some extent, to capture the effect of welding parameters and thermo-mechanical conditions on grain structure, and therefore hardness and strength in the welded joint. A coupled thermo-mechanical model is applied to study the material behaviour during the linear welding stage of friction stir welding (FSW). Three-dimensional finite element (FE) model has been created in ABAQUS/Explicit software using the Johnson-Cook material law. The values of thermo-mechanical quantities during the welding stage are obtained from the numerical model... and shown as distributions across the joint. The obtained values of these quantities are related to the microstructure of the joint zones and hardness distribution, and this relation is discussed.

Keywords:
aluminium alloy 2024 T3 / friction stir welding / numerical simulation / equivalent plastic strain field / temperature field, hardness / microstructure
Source:
Thermal Science, 2022, 27, 1A, 311-320
Publisher:
  • VINČA Institute of Nuclear Sciences
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)

DOI: 10.2298/TSCI210216186V

ISSN: 0354-9836

Scopus: 2-s2.0-85131414995
[ Google Scholar ]
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6008
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Veljić, Darko
AU  - Rakin, Marko
AU  - Sedmak, Aleksandar
AU  - Radović, Nenad
AU  - Međo, Bojan
AU  - Mrdak, Mihailo
AU  - Bajić, Darko
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6008
AB  - This paper deals with analysis and comparison of the equivalent plastic strain and temperature fields in the aluminium alloy 2024 T3 welded joint, with macro/microstructure appearance and hardness profile. In the alloys hardened by heat treatment, grain size and particle size of the precipitate are functions of equivalent plastic strain, strain rate and temperature. By analyzing the equivalent plastic strain fields and temperature fields it is possible, to some extent, to capture the effect of welding parameters and thermo-mechanical conditions on grain structure, and therefore hardness and strength in the welded joint. A coupled thermo-mechanical model is applied to study the material behaviour during the linear welding stage of friction stir welding (FSW). Three-dimensional finite element (FE) model has been created in ABAQUS/Explicit software using the Johnson-Cook material law. The values of thermo-mechanical quantities during the welding stage are obtained from the numerical model and shown as distributions across the joint. The obtained values of these quantities are related to the microstructure of the joint zones and hardness distribution, and this relation is discussed.
PB  - VINČA Institute of Nuclear Sciences
T2  - Thermal Science
T1  - Influence of temperature and plastic deformation on AA2024 T3 friction stir welded joint microstructure
EP  - 320
IS  - 1A
SP  - 311
VL  - 27
DO  - 10.2298/TSCI210216186V
ER  - 
@article{
author = "Veljić, Darko and Rakin, Marko and Sedmak, Aleksandar and Radović, Nenad and Međo, Bojan and Mrdak, Mihailo and Bajić, Darko",
year = "2022",
abstract = "This paper deals with analysis and comparison of the equivalent plastic strain and temperature fields in the aluminium alloy 2024 T3 welded joint, with macro/microstructure appearance and hardness profile. In the alloys hardened by heat treatment, grain size and particle size of the precipitate are functions of equivalent plastic strain, strain rate and temperature. By analyzing the equivalent plastic strain fields and temperature fields it is possible, to some extent, to capture the effect of welding parameters and thermo-mechanical conditions on grain structure, and therefore hardness and strength in the welded joint. A coupled thermo-mechanical model is applied to study the material behaviour during the linear welding stage of friction stir welding (FSW). Three-dimensional finite element (FE) model has been created in ABAQUS/Explicit software using the Johnson-Cook material law. The values of thermo-mechanical quantities during the welding stage are obtained from the numerical model and shown as distributions across the joint. The obtained values of these quantities are related to the microstructure of the joint zones and hardness distribution, and this relation is discussed.",
publisher = "VINČA Institute of Nuclear Sciences",
journal = "Thermal Science",
title = "Influence of temperature and plastic deformation on AA2024 T3 friction stir welded joint microstructure",
pages = "320-311",
number = "1A",
volume = "27",
doi = "10.2298/TSCI210216186V"
}
Veljić, D., Rakin, M., Sedmak, A., Radović, N., Međo, B., Mrdak, M.,& Bajić, D.. (2022). Influence of temperature and plastic deformation on AA2024 T3 friction stir welded joint microstructure. in Thermal Science
VINČA Institute of Nuclear Sciences., 27(1A), 311-320.
https://doi.org/10.2298/TSCI210216186V
Veljić D, Rakin M, Sedmak A, Radović N, Međo B, Mrdak M, Bajić D. Influence of temperature and plastic deformation on AA2024 T3 friction stir welded joint microstructure. in Thermal Science. 2022;27(1A):311-320.
doi:10.2298/TSCI210216186V .
Veljić, Darko, Rakin, Marko, Sedmak, Aleksandar, Radović, Nenad, Međo, Bojan, Mrdak, Mihailo, Bajić, Darko, "Influence of temperature and plastic deformation on AA2024 T3 friction stir welded joint microstructure" in Thermal Science, 27, no. 1A (2022):311-320,
https://doi.org/10.2298/TSCI210216186V . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB