TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Xylanase production by submerged fermentation: screening and selection of producing fungi

Authorized Users Only
2021
Authors
Gazikalović, Ivana
Mijalković, Jelena
Šekuljica, Nataša
Luković, Nevena
Jakovetić Tanasković, Sonja
Knežević-Jugović, Zorica
Conference object (Published version)
Metadata
Show full item record
Abstract
Xylanases represent a diverse group of enzymes that degrade beta-1,4-xylan into xylose, thereby breaking down hemicellulose, one of the major components of plant cell walls. There are several industries that commercially use xylanase, such as pulp and paper making industry for chlorine-free bleaching of wood pulp and waste paper recycling, in food industry as food additives to poultry, in baking industry for improving dough handling and the quality of baked products. Xylanases are often used for the extraction of coffee, plant oils and in the first stage of starch extraction. Along with pectinase and cellulase, xylanases are also often used for clarification of fruit juices. Different microbial sources of xylanolytic enzymes have been reported such as bacteria, fungi, yeast and marine algae. The aim of this research was to find new fungi strains with xylanase production potential. Production of xylanase enzyme was done by submerged fermentation (SmF) with several different fungi specie...s (Penicillium chrysogenum, Aspergillus niger, Aspergillus oryzae, Aspergillus flavus, Mucor sp., Rhizopus sp.) by using beechwood xylan as a substrate. The strains were previously screened for xylanase activity on selective xylan agar medium (XAM) plates over a period of 10 days. Among all the tested fungi, two exhibited significant results (Penicillium chrysogenum, Aspergillus flavus) for growth on XAM and were subjected to submerged fermentation in xylan broth medium for further analysis. Enzyme activities (IU/ml) monitored for both fungi showed a trend in value increase over the course of the first days of fermentation, where enzyme from Penicillium chrysogenum reached its maximum activity od 0.291 ± 0.018 IU/ml on day 4 of the fermentation. In comparison to Penicillium chrysogenum, enzyme activity measured for Aspergillus flavus was at least two-fold greater during all 12 days of fermentation, reaching its maximum of 0.655 ± 0.046 IU/ml on day 8 of the fermentation. pH and temperature optimum were analyzed for both of the selected fungi and the obtained optimal values were pH 5 and 37°C.

Keywords:
xylanase / submerged fermentation / fungi / xylan
Source:
7th International congress, Engineering, environment and materials in process industry EEM2021, 2021, 89-
Publisher:
  • UNIVERSITY OF EAST SARAJEVO, FACULTY OF TECHNOLOGY

DOI: 10.7251/EEMEN2101304G

ISBN: 978-99955-81-38-1

[ Google Scholar ]
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6080
Collections
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Inovacioni centar
TY  - CONF
AU  - Gazikalović, Ivana
AU  - Mijalković, Jelena
AU  - Šekuljica, Nataša
AU  - Luković, Nevena
AU  - Jakovetić Tanasković, Sonja
AU  - Knežević-Jugović, Zorica
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6080
AB  - Xylanases represent a diverse group of enzymes that degrade beta-1,4-xylan into xylose, thereby breaking down hemicellulose, one of the major components of plant cell walls. There are several industries that commercially use xylanase, such as pulp and paper making industry for chlorine-free bleaching of wood pulp and waste paper recycling, in food industry as food additives to poultry, in baking industry for improving dough handling and the quality of baked products. Xylanases are often used for the extraction of coffee, plant oils and in the first stage of starch extraction. Along with pectinase and cellulase, xylanases are also often used for clarification of fruit juices. Different microbial sources of xylanolytic enzymes have been reported such as bacteria, fungi, yeast and marine algae. The aim of this research was to find new fungi strains with xylanase production potential. Production of xylanase enzyme was done by submerged fermentation (SmF) with several different fungi species (Penicillium chrysogenum, Aspergillus niger, Aspergillus oryzae, Aspergillus flavus, Mucor sp., Rhizopus sp.) by using beechwood xylan as a substrate. The strains were previously screened for xylanase activity on selective xylan agar medium (XAM) plates over a period of 10 days. Among all the tested fungi, two exhibited significant results (Penicillium chrysogenum, Aspergillus flavus) for growth on XAM and were subjected to submerged fermentation in xylan broth medium for further analysis. Enzyme activities (IU/ml) monitored for both fungi showed a trend in value increase over the course of the first days of fermentation, where enzyme from Penicillium chrysogenum reached its maximum activity od 0.291 ± 0.018 IU/ml on day 4 of the fermentation. In comparison to Penicillium chrysogenum, enzyme activity measured for Aspergillus flavus was at least two-fold greater during all 12 days of fermentation, reaching its maximum of 0.655 ± 0.046 IU/ml on day 8 of the fermentation. pH and temperature optimum were analyzed for both of the selected fungi and the obtained optimal values were pH 5 and 37°C.
PB  - UNIVERSITY OF EAST SARAJEVO, FACULTY OF TECHNOLOGY
C3  - 7th International congress, Engineering, environment and materials in process industry EEM2021
T1  - Xylanase production by submerged fermentation: screening and selection of producing fungi
SP  - 89
DO  - 10.7251/EEMEN2101304G
ER  - 
@conference{
author = "Gazikalović, Ivana and Mijalković, Jelena and Šekuljica, Nataša and Luković, Nevena and Jakovetić Tanasković, Sonja and Knežević-Jugović, Zorica",
year = "2021",
abstract = "Xylanases represent a diverse group of enzymes that degrade beta-1,4-xylan into xylose, thereby breaking down hemicellulose, one of the major components of plant cell walls. There are several industries that commercially use xylanase, such as pulp and paper making industry for chlorine-free bleaching of wood pulp and waste paper recycling, in food industry as food additives to poultry, in baking industry for improving dough handling and the quality of baked products. Xylanases are often used for the extraction of coffee, plant oils and in the first stage of starch extraction. Along with pectinase and cellulase, xylanases are also often used for clarification of fruit juices. Different microbial sources of xylanolytic enzymes have been reported such as bacteria, fungi, yeast and marine algae. The aim of this research was to find new fungi strains with xylanase production potential. Production of xylanase enzyme was done by submerged fermentation (SmF) with several different fungi species (Penicillium chrysogenum, Aspergillus niger, Aspergillus oryzae, Aspergillus flavus, Mucor sp., Rhizopus sp.) by using beechwood xylan as a substrate. The strains were previously screened for xylanase activity on selective xylan agar medium (XAM) plates over a period of 10 days. Among all the tested fungi, two exhibited significant results (Penicillium chrysogenum, Aspergillus flavus) for growth on XAM and were subjected to submerged fermentation in xylan broth medium for further analysis. Enzyme activities (IU/ml) monitored for both fungi showed a trend in value increase over the course of the first days of fermentation, where enzyme from Penicillium chrysogenum reached its maximum activity od 0.291 ± 0.018 IU/ml on day 4 of the fermentation. In comparison to Penicillium chrysogenum, enzyme activity measured for Aspergillus flavus was at least two-fold greater during all 12 days of fermentation, reaching its maximum of 0.655 ± 0.046 IU/ml on day 8 of the fermentation. pH and temperature optimum were analyzed for both of the selected fungi and the obtained optimal values were pH 5 and 37°C.",
publisher = "UNIVERSITY OF EAST SARAJEVO, FACULTY OF TECHNOLOGY",
journal = "7th International congress, Engineering, environment and materials in process industry EEM2021",
title = "Xylanase production by submerged fermentation: screening and selection of producing fungi",
pages = "89",
doi = "10.7251/EEMEN2101304G"
}
Gazikalović, I., Mijalković, J., Šekuljica, N., Luković, N., Jakovetić Tanasković, S.,& Knežević-Jugović, Z.. (2021). Xylanase production by submerged fermentation: screening and selection of producing fungi. in 7th International congress, Engineering, environment and materials in process industry EEM2021
UNIVERSITY OF EAST SARAJEVO, FACULTY OF TECHNOLOGY., 89.
https://doi.org/10.7251/EEMEN2101304G
Gazikalović I, Mijalković J, Šekuljica N, Luković N, Jakovetić Tanasković S, Knežević-Jugović Z. Xylanase production by submerged fermentation: screening and selection of producing fungi. in 7th International congress, Engineering, environment and materials in process industry EEM2021. 2021;:89.
doi:10.7251/EEMEN2101304G .
Gazikalović, Ivana, Mijalković, Jelena, Šekuljica, Nataša, Luković, Nevena, Jakovetić Tanasković, Sonja, Knežević-Jugović, Zorica, "Xylanase production by submerged fermentation: screening and selection of producing fungi" in 7th International congress, Engineering, environment and materials in process industry EEM2021 (2021):89,
https://doi.org/10.7251/EEMEN2101304G . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB