Effect of combined non-thermal plasma/Fenton treatment on lignocellulose degradation in corn stalks
Authorized Users Only
2023
Authors
Grbić, Jovana
Mladenović, Dragana

Pavlović, Stefan

Veljović, Đorđe

Lazović, Saša

Đukić-Vuković, Aleksandra

Conference object (Published version)

Metadata
Show full item recordAbstract
Corn is one of the world´s most commonly cultivated crops.A major part of the plant remaining after harvesting is the corn stalk.This corn residueis rich in carbohydrates and could be suitable for the fermentative production of numerous value-added products. The corn stalk’s complex structure, recalcitrance deriving from lignin, and high crystallinity and polymerization degree of cellulose prevent conventional pretreatment techniques to separate it efficiently into elementary fractions. Therefore, it is usually processed by burning directly on the ground or landfilling.It seldom can be used for composting or combusted for heat generation. In this study, different advanced oxidation processes were used for the treatment of corn stalks to enable more sustainable valorization of biomass by enzymatic hydrolysis. The effects of non-thermal plasma treatment, treatment with Fenton reagent, and combined non-thermal plasma/Fenton treatment on lignocellulose degradation and biomass digestibility... were monitored. Treatment efficacy in terms of degradation was assessed by determininglignincontent. Structural and textural properties of treated biomass were analyzed using FTIR analysis and mercury intrusion porosimetry (MIP).The carbohydrate digestibility estimation was based on hexose and pentose content in hydrolyzed samples. Applied treatments showed success in breaking complex lignocellulose structures. The delignification rates for the non-thermal plasma treated sample, thesample treated only with the Fenton reagent, and the combined non-thermal plasma/Fenton treated sample were 19%, 28.7%, and 53%, respectively. Selectivity towards lignin increased with prolonging the non-thermal plasma treatmentorthe addition of the Fenton reagent.To achieve a delignification rateof 53% by using only non-thermal plasma, treatment should last at least 60 minutes. When the Fenton reagent is added, the same result is obtained with a halved duration of the plasma treatment. Under these conditions, pore size diameter in treated biomass increased, resulting in enhanced biomass digestibility with 2.25 times higher hexose yield compared to the untreated sample. This is a significant step forward in developing sustainable treatments for lignocellulosic biomass, which is especially important in biorefinery processes.
Keywords:
advanced oxidation processes / lignocellulosicbiomass / porosimetry / delignification / biorefinerySource:
Book of abstracts VIII International congress Engineering, environment and materials in process industry, 2023, 154-Publisher:
- University of East Sarajevo Faculty of Technology
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
- Alliance of International Science Organizations, project SparkGREEN (ANSO-CR-PP 2022-08)
Collections
Institution/Community
Inovacioni centarTY - CONF AU - Grbić, Jovana AU - Mladenović, Dragana AU - Pavlović, Stefan AU - Veljović, Đorđe AU - Lazović, Saša AU - Đukić-Vuković, Aleksandra PY - 2023 UR - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6344 AB - Corn is one of the world´s most commonly cultivated crops.A major part of the plant remaining after harvesting is the corn stalk.This corn residueis rich in carbohydrates and could be suitable for the fermentative production of numerous value-added products. The corn stalk’s complex structure, recalcitrance deriving from lignin, and high crystallinity and polymerization degree of cellulose prevent conventional pretreatment techniques to separate it efficiently into elementary fractions. Therefore, it is usually processed by burning directly on the ground or landfilling.It seldom can be used for composting or combusted for heat generation. In this study, different advanced oxidation processes were used for the treatment of corn stalks to enable more sustainable valorization of biomass by enzymatic hydrolysis. The effects of non-thermal plasma treatment, treatment with Fenton reagent, and combined non-thermal plasma/Fenton treatment on lignocellulose degradation and biomass digestibility were monitored. Treatment efficacy in terms of degradation was assessed by determininglignincontent. Structural and textural properties of treated biomass were analyzed using FTIR analysis and mercury intrusion porosimetry (MIP).The carbohydrate digestibility estimation was based on hexose and pentose content in hydrolyzed samples. Applied treatments showed success in breaking complex lignocellulose structures. The delignification rates for the non-thermal plasma treated sample, thesample treated only with the Fenton reagent, and the combined non-thermal plasma/Fenton treated sample were 19%, 28.7%, and 53%, respectively. Selectivity towards lignin increased with prolonging the non-thermal plasma treatmentorthe addition of the Fenton reagent.To achieve a delignification rateof 53% by using only non-thermal plasma, treatment should last at least 60 minutes. When the Fenton reagent is added, the same result is obtained with a halved duration of the plasma treatment. Under these conditions, pore size diameter in treated biomass increased, resulting in enhanced biomass digestibility with 2.25 times higher hexose yield compared to the untreated sample. This is a significant step forward in developing sustainable treatments for lignocellulosic biomass, which is especially important in biorefinery processes. PB - University of East Sarajevo Faculty of Technology C3 - Book of abstracts VIII International congress Engineering, environment and materials in process industry T1 - Effect of combined non-thermal plasma/Fenton treatment on lignocellulose degradation in corn stalks SP - 154 UR - https://hdl.handle.net/21.15107/rcub_technorep_6344 ER -
@conference{ author = "Grbić, Jovana and Mladenović, Dragana and Pavlović, Stefan and Veljović, Đorđe and Lazović, Saša and Đukić-Vuković, Aleksandra", year = "2023", abstract = "Corn is one of the world´s most commonly cultivated crops.A major part of the plant remaining after harvesting is the corn stalk.This corn residueis rich in carbohydrates and could be suitable for the fermentative production of numerous value-added products. The corn stalk’s complex structure, recalcitrance deriving from lignin, and high crystallinity and polymerization degree of cellulose prevent conventional pretreatment techniques to separate it efficiently into elementary fractions. Therefore, it is usually processed by burning directly on the ground or landfilling.It seldom can be used for composting or combusted for heat generation. In this study, different advanced oxidation processes were used for the treatment of corn stalks to enable more sustainable valorization of biomass by enzymatic hydrolysis. The effects of non-thermal plasma treatment, treatment with Fenton reagent, and combined non-thermal plasma/Fenton treatment on lignocellulose degradation and biomass digestibility were monitored. Treatment efficacy in terms of degradation was assessed by determininglignincontent. Structural and textural properties of treated biomass were analyzed using FTIR analysis and mercury intrusion porosimetry (MIP).The carbohydrate digestibility estimation was based on hexose and pentose content in hydrolyzed samples. Applied treatments showed success in breaking complex lignocellulose structures. The delignification rates for the non-thermal plasma treated sample, thesample treated only with the Fenton reagent, and the combined non-thermal plasma/Fenton treated sample were 19%, 28.7%, and 53%, respectively. Selectivity towards lignin increased with prolonging the non-thermal plasma treatmentorthe addition of the Fenton reagent.To achieve a delignification rateof 53% by using only non-thermal plasma, treatment should last at least 60 minutes. When the Fenton reagent is added, the same result is obtained with a halved duration of the plasma treatment. Under these conditions, pore size diameter in treated biomass increased, resulting in enhanced biomass digestibility with 2.25 times higher hexose yield compared to the untreated sample. This is a significant step forward in developing sustainable treatments for lignocellulosic biomass, which is especially important in biorefinery processes.", publisher = "University of East Sarajevo Faculty of Technology", journal = "Book of abstracts VIII International congress Engineering, environment and materials in process industry", title = "Effect of combined non-thermal plasma/Fenton treatment on lignocellulose degradation in corn stalks", pages = "154", url = "https://hdl.handle.net/21.15107/rcub_technorep_6344" }
Grbić, J., Mladenović, D., Pavlović, S., Veljović, Đ., Lazović, S.,& Đukić-Vuković, A.. (2023). Effect of combined non-thermal plasma/Fenton treatment on lignocellulose degradation in corn stalks. in Book of abstracts VIII International congress Engineering, environment and materials in process industry University of East Sarajevo Faculty of Technology., 154. https://hdl.handle.net/21.15107/rcub_technorep_6344
Grbić J, Mladenović D, Pavlović S, Veljović Đ, Lazović S, Đukić-Vuković A. Effect of combined non-thermal plasma/Fenton treatment on lignocellulose degradation in corn stalks. in Book of abstracts VIII International congress Engineering, environment and materials in process industry. 2023;:154. https://hdl.handle.net/21.15107/rcub_technorep_6344 .
Grbić, Jovana, Mladenović, Dragana, Pavlović, Stefan, Veljović, Đorđe, Lazović, Saša, Đukić-Vuković, Aleksandra, "Effect of combined non-thermal plasma/Fenton treatment on lignocellulose degradation in corn stalks" in Book of abstracts VIII International congress Engineering, environment and materials in process industry (2023):154, https://hdl.handle.net/21.15107/rcub_technorep_6344 .