TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Magneto-Mechanical and Thermal Properties of Nd-Fe-B-Epoxy-Bonded Composite Materials

Thumbnail
2023
Magneto_Mechanical_pub_2023.pdf (2.726Mb)
Authors
Grujić, Aleksandar
Nedeljković, Dragutin
Stajić-Trošić, Jasna
Stijepović, Mirko Z.
Alnouri, Sabla
Perišić, Srđan
Article (Published version)
Metadata
Show full item record
Abstract
Polymer-bonded magnets are a class of composite material that combines the magnetic properties of metal particles and the molding possibility of a polymeric matrix. This class of materials has shown huge potential for various applications in industry and engineering. Traditional research in this field has so far mainly focused on mechanical, electrical or magnetic properties of the composite, or on particle size and distribution. This examination of synthesized Nd-Fe-B-epoxy composite materials includes the mutual comparison of impact toughness, fatigue, and the structural, thermal, dynamic-mechanical, and magnetic behavior of materials with different content of magnetic Nd-Fe-B particles, in a wide range from 5 to 95 wt.%. This paper tests the influence of the Nd-Fe-B content on impacting the toughness of the composite material, as this relationship has not been tested before. The results show that impact toughness decreases, while magnetic properties increase, along with increasing c...ontent of Nd-Fe-B. Based on the observed trends, selected samples have been analyzed in terms of crack growth rate behavior. Analysis of the fracture surface morphology reveals the formation of a stable and homogeneous composite material. The synthesis route, the applied methods of characterization and analysis, and the comparison of the obtained results can provide a composite material with optimum properties for a specific purpose.

Keywords:
bonded magnets / composites / DMA / epoxy / impact toughness / magnetic materials / Nd-Fe-B
Source:
Polymers, 2023, 15, 8, 1894-
Publisher:
  • MDPI
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)

DOI: 10.3390/polym15081894

ISSN: 2073-4360

Scopus: 2-s2.0-85154020724
[ Google Scholar ]
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6371
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Grujić, Aleksandar
AU  - Nedeljković, Dragutin
AU  - Stajić-Trošić, Jasna
AU  - Stijepović, Mirko Z.
AU  - Alnouri, Sabla
AU  - Perišić, Srđan
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6371
AB  - Polymer-bonded magnets are a class of composite material that combines the magnetic properties of metal particles and the molding possibility of a polymeric matrix. This class of materials has shown huge potential for various applications in industry and engineering. Traditional research in this field has so far mainly focused on mechanical, electrical or magnetic properties of the composite, or on particle size and distribution. This examination of synthesized Nd-Fe-B-epoxy composite materials includes the mutual comparison of impact toughness, fatigue, and the structural, thermal, dynamic-mechanical, and magnetic behavior of materials with different content of magnetic Nd-Fe-B particles, in a wide range from 5 to 95 wt.%. This paper tests the influence of the Nd-Fe-B content on impacting the toughness of the composite material, as this relationship has not been tested before. The results show that impact toughness decreases, while magnetic properties increase, along with increasing content of Nd-Fe-B. Based on the observed trends, selected samples have been analyzed in terms of crack growth rate behavior. Analysis of the fracture surface morphology reveals the formation of a stable and homogeneous composite material. The synthesis route, the applied methods of characterization and analysis, and the comparison of the obtained results can provide a composite material with optimum properties for a specific purpose.
PB  - MDPI
T2  - Polymers
T1  - Magneto-Mechanical and Thermal Properties of Nd-Fe-B-Epoxy-Bonded Composite Materials
IS  - 8
SP  - 1894
VL  - 15
DO  - 10.3390/polym15081894
ER  - 
@article{
author = "Grujić, Aleksandar and Nedeljković, Dragutin and Stajić-Trošić, Jasna and Stijepović, Mirko Z. and Alnouri, Sabla and Perišić, Srđan",
year = "2023",
abstract = "Polymer-bonded magnets are a class of composite material that combines the magnetic properties of metal particles and the molding possibility of a polymeric matrix. This class of materials has shown huge potential for various applications in industry and engineering. Traditional research in this field has so far mainly focused on mechanical, electrical or magnetic properties of the composite, or on particle size and distribution. This examination of synthesized Nd-Fe-B-epoxy composite materials includes the mutual comparison of impact toughness, fatigue, and the structural, thermal, dynamic-mechanical, and magnetic behavior of materials with different content of magnetic Nd-Fe-B particles, in a wide range from 5 to 95 wt.%. This paper tests the influence of the Nd-Fe-B content on impacting the toughness of the composite material, as this relationship has not been tested before. The results show that impact toughness decreases, while magnetic properties increase, along with increasing content of Nd-Fe-B. Based on the observed trends, selected samples have been analyzed in terms of crack growth rate behavior. Analysis of the fracture surface morphology reveals the formation of a stable and homogeneous composite material. The synthesis route, the applied methods of characterization and analysis, and the comparison of the obtained results can provide a composite material with optimum properties for a specific purpose.",
publisher = "MDPI",
journal = "Polymers",
title = "Magneto-Mechanical and Thermal Properties of Nd-Fe-B-Epoxy-Bonded Composite Materials",
number = "8",
pages = "1894",
volume = "15",
doi = "10.3390/polym15081894"
}
Grujić, A., Nedeljković, D., Stajić-Trošić, J., Stijepović, M. Z., Alnouri, S.,& Perišić, S.. (2023). Magneto-Mechanical and Thermal Properties of Nd-Fe-B-Epoxy-Bonded Composite Materials. in Polymers
MDPI., 15(8), 1894.
https://doi.org/10.3390/polym15081894
Grujić A, Nedeljković D, Stajić-Trošić J, Stijepović MZ, Alnouri S, Perišić S. Magneto-Mechanical and Thermal Properties of Nd-Fe-B-Epoxy-Bonded Composite Materials. in Polymers. 2023;15(8):1894.
doi:10.3390/polym15081894 .
Grujić, Aleksandar, Nedeljković, Dragutin, Stajić-Trošić, Jasna, Stijepović, Mirko Z., Alnouri, Sabla, Perišić, Srđan, "Magneto-Mechanical and Thermal Properties of Nd-Fe-B-Epoxy-Bonded Composite Materials" in Polymers, 15, no. 8 (2023):1894,
https://doi.org/10.3390/polym15081894 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB