Vujančević, Jelena

Link to this page

Authority KeyName Variants
orcid::0000-0002-8038-247X
  • Vujančević, Jelena (18)
Projects
Directed synthesis, structure and properties of multifunctional materials Synthesis, processing and applications of nanostructured multifunctional materials with defined properties
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200287 (Innovation Center of the Faculty of Technology and Metallurgy) CERIC-ERIC [20177018]
Structure Fund Project [CZ.02.1.01/0.0/0.0/16_013/0001788] UEFISCDI [304/2011]
United States National Aeronautics and Space Administration (NASA), Grant NNX09AV07A United States National Science Foundation (NSF) / Centers of Research Excellence in Science and Technology (CREST), Grant HRD-0833184
AIT grant [BI-RS-18-19-026]
CCCDI - UEFISCDI, PN-III-P2-2.1-PED-2019-4642 CERIC-ERIC (20177018 proposal)
Core Programme 21N Department of Energy/National Nuclear Security Administration NA0003979 award.
ERC advanced grant "PICOPROP" [670918] ERC advanced grant “PICOPROP” (Grant No. 670918)
ERC advanced grant “PICOPROP” (Grant No. 670918). Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200105 (University of Belgrade, Faculty of Mechanical Engineering)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture) MBR Global Water Initiatives
NASANational Aeronautics & Space Administration (NASA) [NNX09AV07A] National Science Foundation grants HRD-1345219 and DMR-1523617.
NCS/CCCDI – UEFISCDI, PN-III-P1-1.1-TE-2019-0688 NSF CRESTNational Science Foundation (NSF)NSF- Directorate for Education & Human Resources (EHR) [HRD-0833184]
[NSF-PREM1523617] Structure Fund Project CZ.02.1.01/0.0/0.0/16_013/0001788
Swiss Contribution [SH/7/2/20] Swiss National Science Foundation (No. 160169)

Author's Bibliography

Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal

Vujančević, Jelena; Andričević, Pavao; Đokić, Veljko; Blagojević, Vladimir; Pavlović, Vera P.; Ćirković, Jovana; Horváth, Endre; Forró, László; Karoui, Abdennaceur; Pavlović, Vladimir B.; Janaćković, Đorđe

(MDPI, 2023)

TY  - JOUR
AU  - Vujančević, Jelena
AU  - Andričević, Pavao
AU  - Đokić, Veljko
AU  - Blagojević, Vladimir
AU  - Pavlović, Vera P.
AU  - Ćirković, Jovana
AU  - Horváth, Endre
AU  - Forró, László
AU  - Karoui, Abdennaceur
AU  - Pavlović, Vladimir B.
AU  - Janaćković, Đorđe
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5921
AB  - In this study, we report the influence of vanadium oxide (VO), as a photosensitive component, on the photoactivity of TiO2 nanotubes (TNTs). A series of TNTs of varying tube diameter were synthesized by the anodization of titanium foils at different voltages, while vanadium oxide was deposited on TNTs by wet chemical deposition. An improvement in the optical properties of nanotubes was observed after the deposition of vanadium oxide. An improvement in the optical properties (redshift in UV-Vis spectra) of TNTs and TNT/VO was noted. The photocatalytic activity was improved with increasing tube diameter, while it was weakened after the deposition of VO. Furthermore, photoactivity was investigated in photodiodes based on TNTs or TNT/VO and single crystals of CH3NH3PbI3. The photoelectric measurement revealed that different TNT diameters did not influence the I-V characteristic of the photodiodes, while the deposition of VO improved the photocurrent for smaller TNTs.
PB  - MDPI
T2  - Catalysts
T1  - Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal
IS  - 2
SP  - 352
VL  - 13
DO  - 10.3390/catal13020352
ER  - 
@article{
author = "Vujančević, Jelena and Andričević, Pavao and Đokić, Veljko and Blagojević, Vladimir and Pavlović, Vera P. and Ćirković, Jovana and Horváth, Endre and Forró, László and Karoui, Abdennaceur and Pavlović, Vladimir B. and Janaćković, Đorđe",
year = "2023",
abstract = "In this study, we report the influence of vanadium oxide (VO), as a photosensitive component, on the photoactivity of TiO2 nanotubes (TNTs). A series of TNTs of varying tube diameter were synthesized by the anodization of titanium foils at different voltages, while vanadium oxide was deposited on TNTs by wet chemical deposition. An improvement in the optical properties of nanotubes was observed after the deposition of vanadium oxide. An improvement in the optical properties (redshift in UV-Vis spectra) of TNTs and TNT/VO was noted. The photocatalytic activity was improved with increasing tube diameter, while it was weakened after the deposition of VO. Furthermore, photoactivity was investigated in photodiodes based on TNTs or TNT/VO and single crystals of CH3NH3PbI3. The photoelectric measurement revealed that different TNT diameters did not influence the I-V characteristic of the photodiodes, while the deposition of VO improved the photocurrent for smaller TNTs.",
publisher = "MDPI",
journal = "Catalysts",
title = "Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal",
number = "2",
pages = "352",
volume = "13",
doi = "10.3390/catal13020352"
}
Vujančević, J., Andričević, P., Đokić, V., Blagojević, V., Pavlović, V. P., Ćirković, J., Horváth, E., Forró, L., Karoui, A., Pavlović, V. B.,& Janaćković, Đ.. (2023). Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. in Catalysts
MDPI., 13(2), 352.
https://doi.org/10.3390/catal13020352
Vujančević J, Andričević P, Đokić V, Blagojević V, Pavlović VP, Ćirković J, Horváth E, Forró L, Karoui A, Pavlović VB, Janaćković Đ. Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. in Catalysts. 2023;13(2):352.
doi:10.3390/catal13020352 .
Vujančević, Jelena, Andričević, Pavao, Đokić, Veljko, Blagojević, Vladimir, Pavlović, Vera P., Ćirković, Jovana, Horváth, Endre, Forró, László, Karoui, Abdennaceur, Pavlović, Vladimir B., Janaćković, Đorđe, "Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal" in Catalysts, 13, no. 2 (2023):352,
https://doi.org/10.3390/catal13020352 . .

Supercritical CO2 assisted deposition of MAPbBr3 perovskite onto TiO2 nanotubes

Stefanović, Milica; Lukić, Ivana; Vujančević, Jelena; Petrović, Rada; Janaćković, Đorđe

(Materials Research Society of Serbia, 2022)

TY  - CONF
AU  - Stefanović, Milica
AU  - Lukić, Ivana
AU  - Vujančević, Jelena
AU  - Petrović, Rada
AU  - Janaćković, Đorđe
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6170
AB  - Supercritical carbon dioxide (sCO2) is an ideal low-temperature cosolvent for perovskite
deposition due to its relatively low critical point (31.2 °C, 73.8 bar), no surface tension, liquidlike density, gas-like viscosity, and diffusivity. It enables faster mass transfer which allows
penetration of crystals in nanoporous structure. The study investigates the influence of time of
deposition of perovskite assisted with supercritical carbon dioxide on the filling of nanotubes.
Perovskite solar cell technology has been developed so fast due to several factors including a
tunable band gap, high absorption coefficient, and low-cost fabrication. The quality of the
perovskite film is important for the high efficiency of perovskite solar cells. Perovskite precursors
are usually deposited from the solution onto a substrate using spin-coating followed by postdeposition treatments, but often it results in low-quality films that cannot provide good
photovoltaic performances. Deposition of perovskite in the presence of sCO2 is a promising
method for the formation of high-quality perovskite layers. In this work, methylammonium lead
bromide perovskite (MAPbBr3) was deposited on TiO2 nanotubes from the solution in
dimethylformamide (DMF) by application of sCO2 at 35 °C and 200 bar for 1 h, and 3 h. FESEM
results show that TiO2 nanotubes were filled with perovskite material in both cases. The diffuse
reflectance spectroscopy measurement of samples proved that the absorption edge of prepared
TiO2 nanotubes/MAPbBr3 was extended to the visible range. Measurement of I-V characteristics
showed that the sample made for 3 h had a higher value of current than the sample prepared for 1
h. The application of sCO2 during the deposition of perovskite has enabled the preparation of a
photodiode with a better contact between TiO2 nanotubes and perovskite which is important for
the future development of solar cells.
PB  - Materials Research Society of Serbia
C3  - 23th Annual Conference YUCOMAT 2022 and 12th WRTCS
T1  - Supercritical CO2 assisted deposition of MAPbBr3 perovskite onto TiO2 nanotubes
SP  - 73
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6170
ER  - 
@conference{
author = "Stefanović, Milica and Lukić, Ivana and Vujančević, Jelena and Petrović, Rada and Janaćković, Đorđe",
year = "2022",
abstract = "Supercritical carbon dioxide (sCO2) is an ideal low-temperature cosolvent for perovskite
deposition due to its relatively low critical point (31.2 °C, 73.8 bar), no surface tension, liquidlike density, gas-like viscosity, and diffusivity. It enables faster mass transfer which allows
penetration of crystals in nanoporous structure. The study investigates the influence of time of
deposition of perovskite assisted with supercritical carbon dioxide on the filling of nanotubes.
Perovskite solar cell technology has been developed so fast due to several factors including a
tunable band gap, high absorption coefficient, and low-cost fabrication. The quality of the
perovskite film is important for the high efficiency of perovskite solar cells. Perovskite precursors
are usually deposited from the solution onto a substrate using spin-coating followed by postdeposition treatments, but often it results in low-quality films that cannot provide good
photovoltaic performances. Deposition of perovskite in the presence of sCO2 is a promising
method for the formation of high-quality perovskite layers. In this work, methylammonium lead
bromide perovskite (MAPbBr3) was deposited on TiO2 nanotubes from the solution in
dimethylformamide (DMF) by application of sCO2 at 35 °C and 200 bar for 1 h, and 3 h. FESEM
results show that TiO2 nanotubes were filled with perovskite material in both cases. The diffuse
reflectance spectroscopy measurement of samples proved that the absorption edge of prepared
TiO2 nanotubes/MAPbBr3 was extended to the visible range. Measurement of I-V characteristics
showed that the sample made for 3 h had a higher value of current than the sample prepared for 1
h. The application of sCO2 during the deposition of perovskite has enabled the preparation of a
photodiode with a better contact between TiO2 nanotubes and perovskite which is important for
the future development of solar cells.",
publisher = "Materials Research Society of Serbia",
journal = "23th Annual Conference YUCOMAT 2022 and 12th WRTCS",
title = "Supercritical CO2 assisted deposition of MAPbBr3 perovskite onto TiO2 nanotubes",
pages = "73",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6170"
}
Stefanović, M., Lukić, I., Vujančević, J., Petrović, R.,& Janaćković, Đ.. (2022). Supercritical CO2 assisted deposition of MAPbBr3 perovskite onto TiO2 nanotubes. in 23th Annual Conference YUCOMAT 2022 and 12th WRTCS
Materials Research Society of Serbia., 73.
https://hdl.handle.net/21.15107/rcub_technorep_6170
Stefanović M, Lukić I, Vujančević J, Petrović R, Janaćković Đ. Supercritical CO2 assisted deposition of MAPbBr3 perovskite onto TiO2 nanotubes. in 23th Annual Conference YUCOMAT 2022 and 12th WRTCS. 2022;:73.
https://hdl.handle.net/21.15107/rcub_technorep_6170 .
Stefanović, Milica, Lukić, Ivana, Vujančević, Jelena, Petrović, Rada, Janaćković, Đorđe, "Supercritical CO2 assisted deposition of MAPbBr3 perovskite onto TiO2 nanotubes" in 23th Annual Conference YUCOMAT 2022 and 12th WRTCS (2022):73,
https://hdl.handle.net/21.15107/rcub_technorep_6170 .

Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells

Stefanović, Milica; Lukić, Ivana; Vujančević, Jelena; Petrović, Rada; Janaćković, Đorđe

(Serbian Academy of Sciences and Arts, 2022)

TY  - CONF
AU  - Stefanović, Milica
AU  - Lukić, Ivana
AU  - Vujančević, Jelena
AU  - Petrović, Rada
AU  - Janaćković, Đorđe
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6172
PB  - Serbian Academy of Sciences and Arts
C3  - Second International conference ELMINA2022 Electron Microscopy of Nanostructures
T1  - Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells
EP  - 190
SP  - 189
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6172
ER  - 
@conference{
author = "Stefanović, Milica and Lukić, Ivana and Vujančević, Jelena and Petrović, Rada and Janaćković, Đorđe",
year = "2022",
publisher = "Serbian Academy of Sciences and Arts",
journal = "Second International conference ELMINA2022 Electron Microscopy of Nanostructures",
title = "Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells",
pages = "190-189",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6172"
}
Stefanović, M., Lukić, I., Vujančević, J., Petrović, R.,& Janaćković, Đ.. (2022). Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells. in Second International conference ELMINA2022 Electron Microscopy of Nanostructures
Serbian Academy of Sciences and Arts., 189-190.
https://hdl.handle.net/21.15107/rcub_technorep_6172
Stefanović M, Lukić I, Vujančević J, Petrović R, Janaćković Đ. Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells. in Second International conference ELMINA2022 Electron Microscopy of Nanostructures. 2022;:189-190.
https://hdl.handle.net/21.15107/rcub_technorep_6172 .
Stefanović, Milica, Lukić, Ivana, Vujančević, Jelena, Petrović, Rada, Janaćković, Đorđe, "Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells" in Second International conference ELMINA2022 Electron Microscopy of Nanostructures (2022):189-190,
https://hdl.handle.net/21.15107/rcub_technorep_6172 .

TiO2 nanotubes film/FTO glass interface: Thermal treatment effects

Vujančević, Jelena; Bjelajac, Anđelika; Veltruska, Katerina; Matolin, Vladimir; Siketić, Zdravko; Provatas, Georgios; Jakšić, Milko; Stan, George; Socol, Gabriel; Mihailescu, Ion; Pavlović, Vladimir B.; Janaćković, Đorđe

(ETRAN, 2022)

TY  - JOUR
AU  - Vujančević, Jelena
AU  - Bjelajac, Anđelika
AU  - Veltruska, Katerina
AU  - Matolin, Vladimir
AU  - Siketić, Zdravko
AU  - Provatas, Georgios
AU  - Jakšić, Milko
AU  - Stan, George
AU  - Socol, Gabriel
AU  - Mihailescu, Ion
AU  - Pavlović, Vladimir B.
AU  - Janaćković, Đorđe
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5173
AB  - Pure Ti films deposited by radio-frequency magnetron sputtering on FTO glass were anodized to fabricate TiO2 nanotubes (NTs) arrays. The TiO2 NTs/FTO samples were sintered at 450, 550 and 630°C, in ambient air. The thermal treatment did not influence the crystal phase composition, preserving in all cases the anatase single phase. As expected, the crystalline anatase quality improved with the annealing temperature. Nevertheless, slight differences in nanotubular morphology, such as the appearance of grains inside the walls, were observed in the case of the sample sintered at 630°C. Chemical analysis by X-ray Photoelectron Spectroscopy of annealed samples revealed the presence of Sn inside TiO2 NTs, due to diffusion of Sn from the substrate to TiO2. For the substrate was used FTO glass whose top layer consists of SnO2 doped with F. Rutherford Backscattering Spectrometry and Time-of-Flight Elastic Recoil Detection Analysis were carried out to study the elemental depth profile of the films. It was found that the temperature of sintering controls the Sn diffusion inside TiO2 film. Sn atoms diffuse towards the TiO2 NTs surface for the samples annealed at 450 and 550°C. The diffusion is however hindered in the case of the heat treatment at 630°C. Besides, the Ti diffusion into the SnO2 underlayer was observed, together with the formation of TiO2/SnO2 interfaces. One then expected but not a great difference in absorption between samples, since all contained anatase phase, as confirmed by Diffuse Reflectance Spectroscopy. A higher amount of Sn was however detected for the sample annealed at 550°C, which accounts for a slight red absorption shift. The importance of controlling the annealing parameters of the anodized TiO2/FTO structures was highlighted through the formation of TiO2-SnO2 interfaces and the Sn insertion from FTO, which can play an essential role in increasing the photoperformances of TiO2 NTs/FTO based structures of photovoltaic cells.
PB  - ETRAN
T2  - Science of Sintering
T1  - TiO2 nanotubes film/FTO glass interface: Thermal treatment effects
EP  - 248
IS  - 2
SP  - 235
VL  - 54
DO  - 10.2298/SOS2202235V
UR  - https://hdl.handle.net/21.15107/rcub_dais_13160
ER  - 
@article{
author = "Vujančević, Jelena and Bjelajac, Anđelika and Veltruska, Katerina and Matolin, Vladimir and Siketić, Zdravko and Provatas, Georgios and Jakšić, Milko and Stan, George and Socol, Gabriel and Mihailescu, Ion and Pavlović, Vladimir B. and Janaćković, Đorđe",
year = "2022",
abstract = "Pure Ti films deposited by radio-frequency magnetron sputtering on FTO glass were anodized to fabricate TiO2 nanotubes (NTs) arrays. The TiO2 NTs/FTO samples were sintered at 450, 550 and 630°C, in ambient air. The thermal treatment did not influence the crystal phase composition, preserving in all cases the anatase single phase. As expected, the crystalline anatase quality improved with the annealing temperature. Nevertheless, slight differences in nanotubular morphology, such as the appearance of grains inside the walls, were observed in the case of the sample sintered at 630°C. Chemical analysis by X-ray Photoelectron Spectroscopy of annealed samples revealed the presence of Sn inside TiO2 NTs, due to diffusion of Sn from the substrate to TiO2. For the substrate was used FTO glass whose top layer consists of SnO2 doped with F. Rutherford Backscattering Spectrometry and Time-of-Flight Elastic Recoil Detection Analysis were carried out to study the elemental depth profile of the films. It was found that the temperature of sintering controls the Sn diffusion inside TiO2 film. Sn atoms diffuse towards the TiO2 NTs surface for the samples annealed at 450 and 550°C. The diffusion is however hindered in the case of the heat treatment at 630°C. Besides, the Ti diffusion into the SnO2 underlayer was observed, together with the formation of TiO2/SnO2 interfaces. One then expected but not a great difference in absorption between samples, since all contained anatase phase, as confirmed by Diffuse Reflectance Spectroscopy. A higher amount of Sn was however detected for the sample annealed at 550°C, which accounts for a slight red absorption shift. The importance of controlling the annealing parameters of the anodized TiO2/FTO structures was highlighted through the formation of TiO2-SnO2 interfaces and the Sn insertion from FTO, which can play an essential role in increasing the photoperformances of TiO2 NTs/FTO based structures of photovoltaic cells.",
publisher = "ETRAN",
journal = "Science of Sintering",
title = "TiO2 nanotubes film/FTO glass interface: Thermal treatment effects",
pages = "248-235",
number = "2",
volume = "54",
doi = "10.2298/SOS2202235V",
url = "https://hdl.handle.net/21.15107/rcub_dais_13160"
}
Vujančević, J., Bjelajac, A., Veltruska, K., Matolin, V., Siketić, Z., Provatas, G., Jakšić, M., Stan, G., Socol, G., Mihailescu, I., Pavlović, V. B.,& Janaćković, Đ.. (2022). TiO2 nanotubes film/FTO glass interface: Thermal treatment effects. in Science of Sintering
ETRAN., 54(2), 235-248.
https://doi.org/10.2298/SOS2202235V
https://hdl.handle.net/21.15107/rcub_dais_13160
Vujančević J, Bjelajac A, Veltruska K, Matolin V, Siketić Z, Provatas G, Jakšić M, Stan G, Socol G, Mihailescu I, Pavlović VB, Janaćković Đ. TiO2 nanotubes film/FTO glass interface: Thermal treatment effects. in Science of Sintering. 2022;54(2):235-248.
doi:10.2298/SOS2202235V
https://hdl.handle.net/21.15107/rcub_dais_13160 .
Vujančević, Jelena, Bjelajac, Anđelika, Veltruska, Katerina, Matolin, Vladimir, Siketić, Zdravko, Provatas, Georgios, Jakšić, Milko, Stan, George, Socol, Gabriel, Mihailescu, Ion, Pavlović, Vladimir B., Janaćković, Đorđe, "TiO2 nanotubes film/FTO glass interface: Thermal treatment effects" in Science of Sintering, 54, no. 2 (2022):235-248,
https://doi.org/10.2298/SOS2202235V .,
https://hdl.handle.net/21.15107/rcub_dais_13160 .

Synthesis and deposition of MAPbBr3 perovskite on titania nanotube arrays

Stefanović, Milica; Vujančević, Jelena; Petrović, Rada; Janaćković, Đorđe

(Belgrade : Materials Research Society of Serbia, 2021)

TY  - CONF
AU  - Stefanović, Milica
AU  - Vujančević, Jelena
AU  - Petrović, Rada
AU  - Janaćković, Đorđe
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6110
AB  - The organo-inorganic perovskites are materials that have recently revolutionized the field of photovoltaics due to their low-cost fabrication and high optical absorption. The hybrid organo-inorganic perovskite absorbs the visible part of the spectrum resulting in the creation of electron-hole pair. To decrease the recombination of charge carriers, the construction of solar cells requires the existence of separate layers for holes and for electrons. TiO2 is usually used as an electron transport layer because its conduction band (CB) lies under the CB of perovskite. In that way, electrons diffuse from CB of perovskite to CB of TiO2. For these experiments, TiO2 nanotubular structure was used as an electron transport layer due to its advantages compared to nanoparticular TiO2. TiO2 nanotubes can provide a one-dimensional transmission channel for the charge carriers, so it will reduce the recombination rate of the carriers and provide a channel for fast carrier transport. However, there is a problem with the contact surface between perovskite and TiO2 nanotubes. The aim of this study is to increase the contact surface of perovskite and TiO2 nanotubes by filling the nanotubes with perovskite material in order to improve electron transport. Methylammonium lead bromide perovskite (MAPbBr3) was deposited on anodically synthesized TiO2 nanotubes which were annealed at 450 °C for 1 h. After degassation of the sample under high vacuum for 3 h at 200 °C, the cooled sample was put in a solution of MAPbBr3 in dimethylformamide (DMF) and it was treated with inert gas (N2), which enabled the filling of the nanotubes with perovskite material to some extent. FESEM and XRD analyses were used for morphological and chemical characterization of the sample. The diffuse reflectance spectroscopy measurement of the sample proved that deposition of MAPbBr3 improves the absorption properties of TiO2 nanotubes. By measuring the I-V characteristics of the sample in the dark and under visible light, a hysteresis curve was obtained.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and the Book of Abstracts, 22nd Annual Conference YUCOMAT 2021
T1  - Synthesis and deposition of MAPbBr3 perovskite on titania nanotube arrays
SP  - 111
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6110
ER  - 
@conference{
author = "Stefanović, Milica and Vujančević, Jelena and Petrović, Rada and Janaćković, Đorđe",
year = "2021",
abstract = "The organo-inorganic perovskites are materials that have recently revolutionized the field of photovoltaics due to their low-cost fabrication and high optical absorption. The hybrid organo-inorganic perovskite absorbs the visible part of the spectrum resulting in the creation of electron-hole pair. To decrease the recombination of charge carriers, the construction of solar cells requires the existence of separate layers for holes and for electrons. TiO2 is usually used as an electron transport layer because its conduction band (CB) lies under the CB of perovskite. In that way, electrons diffuse from CB of perovskite to CB of TiO2. For these experiments, TiO2 nanotubular structure was used as an electron transport layer due to its advantages compared to nanoparticular TiO2. TiO2 nanotubes can provide a one-dimensional transmission channel for the charge carriers, so it will reduce the recombination rate of the carriers and provide a channel for fast carrier transport. However, there is a problem with the contact surface between perovskite and TiO2 nanotubes. The aim of this study is to increase the contact surface of perovskite and TiO2 nanotubes by filling the nanotubes with perovskite material in order to improve electron transport. Methylammonium lead bromide perovskite (MAPbBr3) was deposited on anodically synthesized TiO2 nanotubes which were annealed at 450 °C for 1 h. After degassation of the sample under high vacuum for 3 h at 200 °C, the cooled sample was put in a solution of MAPbBr3 in dimethylformamide (DMF) and it was treated with inert gas (N2), which enabled the filling of the nanotubes with perovskite material to some extent. FESEM and XRD analyses were used for morphological and chemical characterization of the sample. The diffuse reflectance spectroscopy measurement of the sample proved that deposition of MAPbBr3 improves the absorption properties of TiO2 nanotubes. By measuring the I-V characteristics of the sample in the dark and under visible light, a hysteresis curve was obtained.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and the Book of Abstracts, 22nd Annual Conference YUCOMAT 2021",
title = "Synthesis and deposition of MAPbBr3 perovskite on titania nanotube arrays",
pages = "111",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6110"
}
Stefanović, M., Vujančević, J., Petrović, R.,& Janaćković, Đ.. (2021). Synthesis and deposition of MAPbBr3 perovskite on titania nanotube arrays. in Programme and the Book of Abstracts, 22nd Annual Conference YUCOMAT 2021
Belgrade : Materials Research Society of Serbia., 111.
https://hdl.handle.net/21.15107/rcub_technorep_6110
Stefanović M, Vujančević J, Petrović R, Janaćković Đ. Synthesis and deposition of MAPbBr3 perovskite on titania nanotube arrays. in Programme and the Book of Abstracts, 22nd Annual Conference YUCOMAT 2021. 2021;:111.
https://hdl.handle.net/21.15107/rcub_technorep_6110 .
Stefanović, Milica, Vujančević, Jelena, Petrović, Rada, Janaćković, Đorđe, "Synthesis and deposition of MAPbBr3 perovskite on titania nanotube arrays" in Programme and the Book of Abstracts, 22nd Annual Conference YUCOMAT 2021 (2021):111,
https://hdl.handle.net/21.15107/rcub_technorep_6110 .

Application of supercritical carbon dioxide for making perovskite photodiode

Stefanović, Milica; Petrović, Rada; Lukić, Ivana; Vujančević, Jelena; Janaćković, Đorđe

(Institute of Technical Sciences of SASA, 2021)

TY  - CONF
AU  - Stefanović, Milica
AU  - Petrović, Rada
AU  - Lukić, Ivana
AU  - Vujančević, Jelena
AU  - Janaćković, Đorđe
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6166
PB  - Institute of Technical Sciences of SASA
C3  - 19th Young Researchers’ Conference Materials Science And Engineering 2021
T1  - Application of supercritical carbon dioxide for making perovskite photodiode
SP  - 70
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6166
ER  - 
@conference{
author = "Stefanović, Milica and Petrović, Rada and Lukić, Ivana and Vujančević, Jelena and Janaćković, Đorđe",
year = "2021",
publisher = "Institute of Technical Sciences of SASA",
journal = "19th Young Researchers’ Conference Materials Science And Engineering 2021",
title = "Application of supercritical carbon dioxide for making perovskite photodiode",
pages = "70",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6166"
}
Stefanović, M., Petrović, R., Lukić, I., Vujančević, J.,& Janaćković, Đ.. (2021). Application of supercritical carbon dioxide for making perovskite photodiode. in 19th Young Researchers’ Conference Materials Science And Engineering 2021
Institute of Technical Sciences of SASA., 70.
https://hdl.handle.net/21.15107/rcub_technorep_6166
Stefanović M, Petrović R, Lukić I, Vujančević J, Janaćković Đ. Application of supercritical carbon dioxide for making perovskite photodiode. in 19th Young Researchers’ Conference Materials Science And Engineering 2021. 2021;:70.
https://hdl.handle.net/21.15107/rcub_technorep_6166 .
Stefanović, Milica, Petrović, Rada, Lukić, Ivana, Vujančević, Jelena, Janaćković, Đorđe, "Application of supercritical carbon dioxide for making perovskite photodiode" in 19th Young Researchers’ Conference Materials Science And Engineering 2021 (2021):70,
https://hdl.handle.net/21.15107/rcub_technorep_6166 .

Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye

Bjelajac, Anđelika; Petrović, Rada; Vujančević, Jelena; Veltruska, Katerina; Matolin, Vladimir; Siketić, Zdravko; Provatas, George; Jakšić, Milko; Stan, George E.; Socol, Gabriel; Mihailescu, Ion N.; Janaćković, Đorđe

(Pergamon-Elsevier Science Ltd, Oxford, 2020)

TY  - JOUR
AU  - Bjelajac, Anđelika
AU  - Petrović, Rada
AU  - Vujančević, Jelena
AU  - Veltruska, Katerina
AU  - Matolin, Vladimir
AU  - Siketić, Zdravko
AU  - Provatas, George
AU  - Jakšić, Milko
AU  - Stan, George E.
AU  - Socol, Gabriel
AU  - Mihailescu, Ion N.
AU  - Janaćković, Đorđe
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4723
AB  - We fabricated Sn-doped TiO2 nanotubular film via annealing of anodized TiO2 nanotubes grown on F-SnO2 (FTO) glass. Annealing was carried out at 500 degrees C in ambient air. Anatase crystal structure was achieved with no change in nanotubular morphology in respect to as-anodized amorphous TiO(2 )nanotubes. The X-ray photoelectron spectroscopy analysis revealed Sn on the surface of TiO2 film, following the thermal treatment, probably caused by the diffusion from FTO glass. Depth profile examination of the film chemical composition was conducted by elastic recoil detection analysis, which showed that in addition to the diffusion of Sn from FTO, diffusion of Ti to FTO concurrently occurred. Thus, a higher concentration of Sn was found at the bottom of the tubes, while a lower concentration was present on the tubes' surface top. This explains the improved optical response revealed by a diffuse reflectance spectroscopy. The absorption enhancement demonstrated that Sn-doped TiO2 film was efficient in the degradation of methyl orange dye under visible light.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Journal of Physics and Chemistry of Solids
T1  - Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye
VL  - 147
DO  - 10.1016/j.jpcs.2020.109609
ER  - 
@article{
author = "Bjelajac, Anđelika and Petrović, Rada and Vujančević, Jelena and Veltruska, Katerina and Matolin, Vladimir and Siketić, Zdravko and Provatas, George and Jakšić, Milko and Stan, George E. and Socol, Gabriel and Mihailescu, Ion N. and Janaćković, Đorđe",
year = "2020",
abstract = "We fabricated Sn-doped TiO2 nanotubular film via annealing of anodized TiO2 nanotubes grown on F-SnO2 (FTO) glass. Annealing was carried out at 500 degrees C in ambient air. Anatase crystal structure was achieved with no change in nanotubular morphology in respect to as-anodized amorphous TiO(2 )nanotubes. The X-ray photoelectron spectroscopy analysis revealed Sn on the surface of TiO2 film, following the thermal treatment, probably caused by the diffusion from FTO glass. Depth profile examination of the film chemical composition was conducted by elastic recoil detection analysis, which showed that in addition to the diffusion of Sn from FTO, diffusion of Ti to FTO concurrently occurred. Thus, a higher concentration of Sn was found at the bottom of the tubes, while a lower concentration was present on the tubes' surface top. This explains the improved optical response revealed by a diffuse reflectance spectroscopy. The absorption enhancement demonstrated that Sn-doped TiO2 film was efficient in the degradation of methyl orange dye under visible light.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Journal of Physics and Chemistry of Solids",
title = "Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye",
volume = "147",
doi = "10.1016/j.jpcs.2020.109609"
}
Bjelajac, A., Petrović, R., Vujančević, J., Veltruska, K., Matolin, V., Siketić, Z., Provatas, G., Jakšić, M., Stan, G. E., Socol, G., Mihailescu, I. N.,& Janaćković, Đ.. (2020). Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. in Journal of Physics and Chemistry of Solids
Pergamon-Elsevier Science Ltd, Oxford., 147.
https://doi.org/10.1016/j.jpcs.2020.109609
Bjelajac A, Petrović R, Vujančević J, Veltruska K, Matolin V, Siketić Z, Provatas G, Jakšić M, Stan GE, Socol G, Mihailescu IN, Janaćković Đ. Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. in Journal of Physics and Chemistry of Solids. 2020;147.
doi:10.1016/j.jpcs.2020.109609 .
Bjelajac, Anđelika, Petrović, Rada, Vujančević, Jelena, Veltruska, Katerina, Matolin, Vladimir, Siketić, Zdravko, Provatas, George, Jakšić, Milko, Stan, George E., Socol, Gabriel, Mihailescu, Ion N., Janaćković, Đorđe, "Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye" in Journal of Physics and Chemistry of Solids, 147 (2020),
https://doi.org/10.1016/j.jpcs.2020.109609 . .
18
8
19

Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye

Bjelajac, Anđelika; Petrović, Rada; Vujančević, Jelena; Veltruska, Katerina; Matolin, Vladimir; Siketić, Zdravko; Provatas, George; Jakšić, Milko; Stan, George E.; Socol, Gabriel; Mihailescu, Ion N.; Janaćković, Đorđe

(Pergamon-Elsevier Science Ltd, Oxford, 2020)

TY  - JOUR
AU  - Bjelajac, Anđelika
AU  - Petrović, Rada
AU  - Vujančević, Jelena
AU  - Veltruska, Katerina
AU  - Matolin, Vladimir
AU  - Siketić, Zdravko
AU  - Provatas, George
AU  - Jakšić, Milko
AU  - Stan, George E.
AU  - Socol, Gabriel
AU  - Mihailescu, Ion N.
AU  - Janaćković, Đorđe
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4396
AB  - We fabricated Sn-doped TiO2 nanotubular film via annealing of anodized TiO2 nanotubes grown on F-SnO2 (FTO) glass. Annealing was carried out at 500 degrees C in ambient air. Anatase crystal structure was achieved with no change in nanotubular morphology in respect to as-anodized amorphous TiO(2 )nanotubes. The X-ray photoelectron spectroscopy analysis revealed Sn on the surface of TiO2 film, following the thermal treatment, probably caused by the diffusion from FTO glass. Depth profile examination of the film chemical composition was conducted by elastic recoil detection analysis, which showed that in addition to the diffusion of Sn from FTO, diffusion of Ti to FTO concurrently occurred. Thus, a higher concentration of Sn was found at the bottom of the tubes, while a lower concentration was present on the tubes' surface top. This explains the improved optical response revealed by a diffuse reflectance spectroscopy. The absorption enhancement demonstrated that Sn-doped TiO2 film was efficient in the degradation of methyl orange dye under visible light.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Journal of Physics and Chemistry of Solids
T1  - Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye
SP  - 109609
VL  - 147
DO  - 10.1016/j.jpcs.2020.109609
ER  - 
@article{
author = "Bjelajac, Anđelika and Petrović, Rada and Vujančević, Jelena and Veltruska, Katerina and Matolin, Vladimir and Siketić, Zdravko and Provatas, George and Jakšić, Milko and Stan, George E. and Socol, Gabriel and Mihailescu, Ion N. and Janaćković, Đorđe",
year = "2020",
abstract = "We fabricated Sn-doped TiO2 nanotubular film via annealing of anodized TiO2 nanotubes grown on F-SnO2 (FTO) glass. Annealing was carried out at 500 degrees C in ambient air. Anatase crystal structure was achieved with no change in nanotubular morphology in respect to as-anodized amorphous TiO(2 )nanotubes. The X-ray photoelectron spectroscopy analysis revealed Sn on the surface of TiO2 film, following the thermal treatment, probably caused by the diffusion from FTO glass. Depth profile examination of the film chemical composition was conducted by elastic recoil detection analysis, which showed that in addition to the diffusion of Sn from FTO, diffusion of Ti to FTO concurrently occurred. Thus, a higher concentration of Sn was found at the bottom of the tubes, while a lower concentration was present on the tubes' surface top. This explains the improved optical response revealed by a diffuse reflectance spectroscopy. The absorption enhancement demonstrated that Sn-doped TiO2 film was efficient in the degradation of methyl orange dye under visible light.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Journal of Physics and Chemistry of Solids",
title = "Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye",
pages = "109609",
volume = "147",
doi = "10.1016/j.jpcs.2020.109609"
}
Bjelajac, A., Petrović, R., Vujančević, J., Veltruska, K., Matolin, V., Siketić, Z., Provatas, G., Jakšić, M., Stan, G. E., Socol, G., Mihailescu, I. N.,& Janaćković, Đ.. (2020). Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. in Journal of Physics and Chemistry of Solids
Pergamon-Elsevier Science Ltd, Oxford., 147, 109609.
https://doi.org/10.1016/j.jpcs.2020.109609
Bjelajac A, Petrović R, Vujančević J, Veltruska K, Matolin V, Siketić Z, Provatas G, Jakšić M, Stan GE, Socol G, Mihailescu IN, Janaćković Đ. Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. in Journal of Physics and Chemistry of Solids. 2020;147:109609.
doi:10.1016/j.jpcs.2020.109609 .
Bjelajac, Anđelika, Petrović, Rada, Vujančević, Jelena, Veltruska, Katerina, Matolin, Vladimir, Siketić, Zdravko, Provatas, George, Jakšić, Milko, Stan, George E., Socol, Gabriel, Mihailescu, Ion N., Janaćković, Đorđe, "Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye" in Journal of Physics and Chemistry of Solids, 147 (2020):109609,
https://doi.org/10.1016/j.jpcs.2020.109609 . .
18
8
18

Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method

Vasiljević, Zorka Ž.; Dojčinović, Milena; Vujančević, Jelena; Janković-Častvan, Ivona; Ognjanović, M.; Tadić, N.; Stojadinović, S.; Branković, Goran; Nikolić, Maria Vesna

(Royal Soc, London, 2020)

TY  - JOUR
AU  - Vasiljević, Zorka Ž.
AU  - Dojčinović, Milena
AU  - Vujančević, Jelena
AU  - Janković-Častvan, Ivona
AU  - Ognjanović, M.
AU  - Tadić, N.
AU  - Stojadinović, S.
AU  - Branković, Goran
AU  - Nikolić, Maria Vesna
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4401
AB  - The aim of this work was to synthesize semiconducting oxide nanoparticles using a simple method with low production cost to be applied in natural sunlight for photocatalytic degradation of pollutants in waste water. Iron titanate (Fe2TiO5) nanoparticles with an orthorhombic structure were successfully synthesized using a modified sol-gel method and calcination at 750 degrees C. The as-prepared Fe2TiO5 nanoparticles exhibited a moderate specific surface area. The mesoporous Fe2TiO5 nanoparticles possessed strong absorption in the visible-light region and the band gap was estimated to be around 2.16 eV. The photocatalytic activity was evaluated by the degradation of methylene blue under natural sunlight. The effect of parameters such as the amount of catalyst, initial concentration of the dye and pH of the dye solution on the removal efficiency of methylene blue was investigated. Fe2TiO5 showed high degradation efficiency in a strong alkaline medium that can be the result of the facilitated formation of OH radicals due to an increased concentration of hydroxyl ions.
PB  - Royal Soc, London
T2  - Royal Society Open Science
T1  - Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method
IS  - 9
VL  - 7
DO  - 10.1098/rsos.200708
ER  - 
@article{
author = "Vasiljević, Zorka Ž. and Dojčinović, Milena and Vujančević, Jelena and Janković-Častvan, Ivona and Ognjanović, M. and Tadić, N. and Stojadinović, S. and Branković, Goran and Nikolić, Maria Vesna",
year = "2020",
abstract = "The aim of this work was to synthesize semiconducting oxide nanoparticles using a simple method with low production cost to be applied in natural sunlight for photocatalytic degradation of pollutants in waste water. Iron titanate (Fe2TiO5) nanoparticles with an orthorhombic structure were successfully synthesized using a modified sol-gel method and calcination at 750 degrees C. The as-prepared Fe2TiO5 nanoparticles exhibited a moderate specific surface area. The mesoporous Fe2TiO5 nanoparticles possessed strong absorption in the visible-light region and the band gap was estimated to be around 2.16 eV. The photocatalytic activity was evaluated by the degradation of methylene blue under natural sunlight. The effect of parameters such as the amount of catalyst, initial concentration of the dye and pH of the dye solution on the removal efficiency of methylene blue was investigated. Fe2TiO5 showed high degradation efficiency in a strong alkaline medium that can be the result of the facilitated formation of OH radicals due to an increased concentration of hydroxyl ions.",
publisher = "Royal Soc, London",
journal = "Royal Society Open Science",
title = "Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method",
number = "9",
volume = "7",
doi = "10.1098/rsos.200708"
}
Vasiljević, Z. Ž., Dojčinović, M., Vujančević, J., Janković-Častvan, I., Ognjanović, M., Tadić, N., Stojadinović, S., Branković, G.,& Nikolić, M. V.. (2020). Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method. in Royal Society Open Science
Royal Soc, London., 7(9).
https://doi.org/10.1098/rsos.200708
Vasiljević ZŽ, Dojčinović M, Vujančević J, Janković-Častvan I, Ognjanović M, Tadić N, Stojadinović S, Branković G, Nikolić MV. Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method. in Royal Society Open Science. 2020;7(9).
doi:10.1098/rsos.200708 .
Vasiljević, Zorka Ž., Dojčinović, Milena, Vujančević, Jelena, Janković-Častvan, Ivona, Ognjanović, M., Tadić, N., Stojadinović, S., Branković, Goran, Nikolić, Maria Vesna, "Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method" in Royal Society Open Science, 7, no. 9 (2020),
https://doi.org/10.1098/rsos.200708 . .
1
167
20
131

Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping

Vujančević, Jelena; Andričević, Pavao; Bjelajac, Anđelika; Đokić, Veljko; Popović, Maja; Rakočević, Zlatko Lj.; Horvath, Endre; Kollar, Marton; Nafradi, Balint; Schiller, Andreas; Domanski, Konrad; Forro, Laszlo; Pavlović, Vera P.; Janaćković, Đorđe

(Elsevier Sci Ltd, Oxford, 2019)

TY  - JOUR
AU  - Vujančević, Jelena
AU  - Andričević, Pavao
AU  - Bjelajac, Anđelika
AU  - Đokić, Veljko
AU  - Popović, Maja
AU  - Rakočević, Zlatko Lj.
AU  - Horvath, Endre
AU  - Kollar, Marton
AU  - Nafradi, Balint
AU  - Schiller, Andreas
AU  - Domanski, Konrad
AU  - Forro, Laszlo
AU  - Pavlović, Vera P.
AU  - Janaćković, Đorđe
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4251
AB  - Highly ordered, anodically grown TiO2 nanotubes on titanium supports were annealed in ammonia atmosphere in order to incorporate nitrogen doping ( lt = 2 at.%) in the titanium oxide lattice. FESEM micrographs revealed nanotubes with an average outer diameter of 101.5 +/- 1.5 nm and an average wall thickness of about 13 nm. Anatase crystals were formed inside the tubes after annealing in ammonia atmosphere for 30 min. With further annealing, rutile peaks appeared due to the thermal oxidation of the foil and rise as the duration of heat treatment was increased. The concentration and chemical nature of nitrogen in the nanotube arrays can be correlated to the optical response of dry-pressed heterojunctions of doped TiO2/CH3NH3PbI3 single crystals. The N-TiO2/perovskite heterojunction with the highest amount of interstitial nitrogen exhibited an improved photocurrent, indicating the importance of the semiconductor doping-based heterojunction optimization strategies to deliver competitive levels of halide perovskite-based optoelectronic devices to be envisioned for urban infrastructures.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping
EP  - 10020
IS  - 8
SP  - 10013
VL  - 45
DO  - 10.1016/j.ceramint.2019.02.045
ER  - 
@article{
author = "Vujančević, Jelena and Andričević, Pavao and Bjelajac, Anđelika and Đokić, Veljko and Popović, Maja and Rakočević, Zlatko Lj. and Horvath, Endre and Kollar, Marton and Nafradi, Balint and Schiller, Andreas and Domanski, Konrad and Forro, Laszlo and Pavlović, Vera P. and Janaćković, Đorđe",
year = "2019",
abstract = "Highly ordered, anodically grown TiO2 nanotubes on titanium supports were annealed in ammonia atmosphere in order to incorporate nitrogen doping ( lt = 2 at.%) in the titanium oxide lattice. FESEM micrographs revealed nanotubes with an average outer diameter of 101.5 +/- 1.5 nm and an average wall thickness of about 13 nm. Anatase crystals were formed inside the tubes after annealing in ammonia atmosphere for 30 min. With further annealing, rutile peaks appeared due to the thermal oxidation of the foil and rise as the duration of heat treatment was increased. The concentration and chemical nature of nitrogen in the nanotube arrays can be correlated to the optical response of dry-pressed heterojunctions of doped TiO2/CH3NH3PbI3 single crystals. The N-TiO2/perovskite heterojunction with the highest amount of interstitial nitrogen exhibited an improved photocurrent, indicating the importance of the semiconductor doping-based heterojunction optimization strategies to deliver competitive levels of halide perovskite-based optoelectronic devices to be envisioned for urban infrastructures.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping",
pages = "10020-10013",
number = "8",
volume = "45",
doi = "10.1016/j.ceramint.2019.02.045"
}
Vujančević, J., Andričević, P., Bjelajac, A., Đokić, V., Popović, M., Rakočević, Z. Lj., Horvath, E., Kollar, M., Nafradi, B., Schiller, A., Domanski, K., Forro, L., Pavlović, V. P.,& Janaćković, Đ.. (2019). Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping. in Ceramics International
Elsevier Sci Ltd, Oxford., 45(8), 10013-10020.
https://doi.org/10.1016/j.ceramint.2019.02.045
Vujančević J, Andričević P, Bjelajac A, Đokić V, Popović M, Rakočević ZL, Horvath E, Kollar M, Nafradi B, Schiller A, Domanski K, Forro L, Pavlović VP, Janaćković Đ. Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping. in Ceramics International. 2019;45(8):10013-10020.
doi:10.1016/j.ceramint.2019.02.045 .
Vujančević, Jelena, Andričević, Pavao, Bjelajac, Anđelika, Đokić, Veljko, Popović, Maja, Rakočević, Zlatko Lj., Horvath, Endre, Kollar, Marton, Nafradi, Balint, Schiller, Andreas, Domanski, Konrad, Forro, Laszlo, Pavlović, Vera P., Janaćković, Đorđe, "Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping" in Ceramics International, 45, no. 8 (2019):10013-10020,
https://doi.org/10.1016/j.ceramint.2019.02.045 . .
5
2
2

Supporting information for the article: Vujančević, J., Andričević, P., Bjelajac, A., Đokić, V., Popović, M., Rakočević, Z., Horváth, E., Kollár, M., Náfrádi, B., Schiller, A., Domanski, K., Forró, L., Pavlović, V., Janaćković, Đ., 2019. Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping. Ceramics International 45, 10013–10020. https://doi.org/10.1016/j.ceramint.2019.02.045

Vujančević, Jelena; Andričević, Pavao; Bjelajac, Anđelika; Đokić, Veljko; Popović, Maja; Rakočević, Zlatko Lj.; Horváth, Endre; Kollar, Marton; Náfrádi, Bálint; Schiller, Andreas; Domanski, Konrad; Forró, Laszlo; Pavlović, Vera P.; Janaćković, Đorđe

(2019)

TY  - DATA
AU  - Vujančević, Jelena
AU  - Andričević, Pavao
AU  - Bjelajac, Anđelika
AU  - Đokić, Veljko
AU  - Popović, Maja
AU  - Rakočević, Zlatko Lj.
AU  - Horváth, Endre
AU  - Kollar, Marton
AU  - Náfrádi, Bálint
AU  - Schiller, Andreas
AU  - Domanski, Konrad
AU  - Forró, Laszlo
AU  - Pavlović, Vera P.
AU  - Janaćković, Đorđe
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4163
AB  - Table S1. Reported methods for nitrogen doping of anodized TiO2 nanotube arrays; Figure S1. SEM images and statistical distributions of outer diameters obtained by analyzing SEM micrographs of 100 nanotubes; Table S2. Average morphology parameters for TiO2-undoped, TiO2-N30, TiO2-N60 and TiO2-N90 samples; Table S3. Average crystals size for TiO2-undoped, TiO2-N30, TiO2-N60 and TiO2-N90 samples; Figure S2. Deconvoluted XPS spectra of N 1s core level of Ti foil (black line-experimental, grey line-background, magenta line-envelope); Table S4. Peak positions and atomic percentages of N1s core levels for TiO2-undoped, TiO2-N30, TiO2-N60 and TiO2-N90 samples; Table S5. Positions and atomic percentages of Ti 2p3/2 and O1s core peaks for TiO2-undoped, TiO2-N30, TiO2-N60 and TiO2-N90 samples; Figure S3. The time evolution of the current during the preconditioning of the TiO2/perovskite sample at a bias voltage of 100 V for 75 sec. Dashed line is the logarithmic fit of the base line of the current time evolution; Figure S4. Ideality factor for TiO2-undoped, TiO2-N30, TiO2-N60 and TiO2-N90 samples
T2  - Ceramics International
T1  - Supporting information for the article: Vujančević, J., Andričević, P., Bjelajac, A., Đokić, V., Popović, M., Rakočević, Z., Horváth, E., Kollár, M., Náfrádi, B., Schiller, A., Domanski, K., Forró, L., Pavlović, V., Janaćković, Đ., 2019. Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping. Ceramics International 45, 10013–10020. https://doi.org/10.1016/j.ceramint.2019.02.045
UR  - https://hdl.handle.net/21.15107/rcub_dais_5969
ER  - 
@misc{
author = "Vujančević, Jelena and Andričević, Pavao and Bjelajac, Anđelika and Đokić, Veljko and Popović, Maja and Rakočević, Zlatko Lj. and Horváth, Endre and Kollar, Marton and Náfrádi, Bálint and Schiller, Andreas and Domanski, Konrad and Forró, Laszlo and Pavlović, Vera P. and Janaćković, Đorđe",
year = "2019",
abstract = "Table S1. Reported methods for nitrogen doping of anodized TiO2 nanotube arrays; Figure S1. SEM images and statistical distributions of outer diameters obtained by analyzing SEM micrographs of 100 nanotubes; Table S2. Average morphology parameters for TiO2-undoped, TiO2-N30, TiO2-N60 and TiO2-N90 samples; Table S3. Average crystals size for TiO2-undoped, TiO2-N30, TiO2-N60 and TiO2-N90 samples; Figure S2. Deconvoluted XPS spectra of N 1s core level of Ti foil (black line-experimental, grey line-background, magenta line-envelope); Table S4. Peak positions and atomic percentages of N1s core levels for TiO2-undoped, TiO2-N30, TiO2-N60 and TiO2-N90 samples; Table S5. Positions and atomic percentages of Ti 2p3/2 and O1s core peaks for TiO2-undoped, TiO2-N30, TiO2-N60 and TiO2-N90 samples; Figure S3. The time evolution of the current during the preconditioning of the TiO2/perovskite sample at a bias voltage of 100 V for 75 sec. Dashed line is the logarithmic fit of the base line of the current time evolution; Figure S4. Ideality factor for TiO2-undoped, TiO2-N30, TiO2-N60 and TiO2-N90 samples",
journal = "Ceramics International",
title = "Supporting information for the article: Vujančević, J., Andričević, P., Bjelajac, A., Đokić, V., Popović, M., Rakočević, Z., Horváth, E., Kollár, M., Náfrádi, B., Schiller, A., Domanski, K., Forró, L., Pavlović, V., Janaćković, Đ., 2019. Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping. Ceramics International 45, 10013–10020. https://doi.org/10.1016/j.ceramint.2019.02.045",
url = "https://hdl.handle.net/21.15107/rcub_dais_5969"
}
Vujančević, J., Andričević, P., Bjelajac, A., Đokić, V., Popović, M., Rakočević, Z. Lj., Horváth, E., Kollar, M., Náfrádi, B., Schiller, A., Domanski, K., Forró, L., Pavlović, V. P.,& Janaćković, Đ.. (2019). Supporting information for the article: Vujančević, J., Andričević, P., Bjelajac, A., Đokić, V., Popović, M., Rakočević, Z., Horváth, E., Kollár, M., Náfrádi, B., Schiller, A., Domanski, K., Forró, L., Pavlović, V., Janaćković, Đ., 2019. Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping. Ceramics International 45, 10013–10020. https://doi.org/10.1016/j.ceramint.2019.02.045. in Ceramics International.
https://hdl.handle.net/21.15107/rcub_dais_5969
Vujančević J, Andričević P, Bjelajac A, Đokić V, Popović M, Rakočević ZL, Horváth E, Kollar M, Náfrádi B, Schiller A, Domanski K, Forró L, Pavlović VP, Janaćković Đ. Supporting information for the article: Vujančević, J., Andričević, P., Bjelajac, A., Đokić, V., Popović, M., Rakočević, Z., Horváth, E., Kollár, M., Náfrádi, B., Schiller, A., Domanski, K., Forró, L., Pavlović, V., Janaćković, Đ., 2019. Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping. Ceramics International 45, 10013–10020. https://doi.org/10.1016/j.ceramint.2019.02.045. in Ceramics International. 2019;.
https://hdl.handle.net/21.15107/rcub_dais_5969 .
Vujančević, Jelena, Andričević, Pavao, Bjelajac, Anđelika, Đokić, Veljko, Popović, Maja, Rakočević, Zlatko Lj., Horváth, Endre, Kollar, Marton, Náfrádi, Bálint, Schiller, Andreas, Domanski, Konrad, Forró, Laszlo, Pavlović, Vera P., Janaćković, Đorđe, "Supporting information for the article: Vujančević, J., Andričević, P., Bjelajac, A., Đokić, V., Popović, M., Rakočević, Z., Horváth, E., Kollár, M., Náfrádi, B., Schiller, A., Domanski, K., Forró, L., Pavlović, V., Janaćković, Đ., 2019. Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping. Ceramics International 45, 10013–10020. https://doi.org/10.1016/j.ceramint.2019.02.045" in Ceramics International (2019),
https://hdl.handle.net/21.15107/rcub_dais_5969 .

ToF-ERDA/RBS analysis of annealed TiO2 nanotubes grown onto FTO glass

Vujančević, Jelena; Bjelajac, Anđelika; Provatas, Georgios; Siketić, Zdravko; Jakšić, Milko; Pavlović, Vladimir B.; Janaćković, Đorđe

(Novi Sad : Faculty of Technology, 2019)

TY  - CONF
AU  - Vujančević, Jelena
AU  - Bjelajac, Anđelika
AU  - Provatas, Georgios
AU  - Siketić, Zdravko
AU  - Jakšić, Milko
AU  - Pavlović, Vladimir B.
AU  - Janaćković, Đorđe
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4170
AB  - Different semiconductors have been studied as photoanode material for solar cells. Among them, TiO2 has been shown to be the best material due to its chemical stability and good charge transport capability. It is usually deposited onto FTO glass (F-SnO2), and then heated at high temperature in order to obtain inter-crystalline electric contact for improving electron conductivity. The focus of this research was chemical analysis of the TiO2 nanotubes (NTs) obtained by anodization of titanium film on FTO glass using NH4F in ethylene glycol electrolyte. There are only few studies suggesting that the electrolyte is a source of N dopant in TiO2, but also Sn diffusion from FTO support was reported. This study aims to show the chemical distribution of elements of interest along the nanotubes depth. For that purpose the time-of-flight elastic recoil detection analysis (ToF-ERDA) and Rutherford backscattering (RBS) methods were used as complementary techniques for chemical analysis of both light, such is N, and heavy elements, such is Sn. The TiO2 NTs films were annealed at different temperatures (450– 630 °C) and the impact of the heating temperature on the chemical distribution was followed.
PB  - Novi Sad : Faculty of Technology
C3  - Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), Octo
T1  - ToF-ERDA/RBS analysis of annealed TiO2 nanotubes grown onto FTO glass
EP  - 132
SP  - 132
UR  - https://hdl.handle.net/21.15107/rcub_technorep_4170
ER  - 
@conference{
author = "Vujančević, Jelena and Bjelajac, Anđelika and Provatas, Georgios and Siketić, Zdravko and Jakšić, Milko and Pavlović, Vladimir B. and Janaćković, Đorđe",
year = "2019",
abstract = "Different semiconductors have been studied as photoanode material for solar cells. Among them, TiO2 has been shown to be the best material due to its chemical stability and good charge transport capability. It is usually deposited onto FTO glass (F-SnO2), and then heated at high temperature in order to obtain inter-crystalline electric contact for improving electron conductivity. The focus of this research was chemical analysis of the TiO2 nanotubes (NTs) obtained by anodization of titanium film on FTO glass using NH4F in ethylene glycol electrolyte. There are only few studies suggesting that the electrolyte is a source of N dopant in TiO2, but also Sn diffusion from FTO support was reported. This study aims to show the chemical distribution of elements of interest along the nanotubes depth. For that purpose the time-of-flight elastic recoil detection analysis (ToF-ERDA) and Rutherford backscattering (RBS) methods were used as complementary techniques for chemical analysis of both light, such is N, and heavy elements, such is Sn. The TiO2 NTs films were annealed at different temperatures (450– 630 °C) and the impact of the heating temperature on the chemical distribution was followed.",
publisher = "Novi Sad : Faculty of Technology",
journal = "Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), Octo",
title = "ToF-ERDA/RBS analysis of annealed TiO2 nanotubes grown onto FTO glass",
pages = "132-132",
url = "https://hdl.handle.net/21.15107/rcub_technorep_4170"
}
Vujančević, J., Bjelajac, A., Provatas, G., Siketić, Z., Jakšić, M., Pavlović, V. B.,& Janaćković, Đ.. (2019). ToF-ERDA/RBS analysis of annealed TiO2 nanotubes grown onto FTO glass. in Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), Octo
Novi Sad : Faculty of Technology., 132-132.
https://hdl.handle.net/21.15107/rcub_technorep_4170
Vujančević J, Bjelajac A, Provatas G, Siketić Z, Jakšić M, Pavlović VB, Janaćković Đ. ToF-ERDA/RBS analysis of annealed TiO2 nanotubes grown onto FTO glass. in Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), Octo. 2019;:132-132.
https://hdl.handle.net/21.15107/rcub_technorep_4170 .
Vujančević, Jelena, Bjelajac, Anđelika, Provatas, Georgios, Siketić, Zdravko, Jakšić, Milko, Pavlović, Vladimir B., Janaćković, Đorđe, "ToF-ERDA/RBS analysis of annealed TiO2 nanotubes grown onto FTO glass" in Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), Octo (2019):132-132,
https://hdl.handle.net/21.15107/rcub_technorep_4170 .

Customizing nanotubular titania for photocatalytic activity

Vujančević, Jelena; Bjelajac, Anđelika; Ćirković, Jovana; Pavlović, Vera P.; Horváth, Endre; Forró, László; Janaćković, Đorđe; Pavlović, Vladimir B.

(Belgrade : Institute of Technical Sciences of SASA, 2018)

TY  - CONF
AU  - Vujančević, Jelena
AU  - Bjelajac, Anđelika
AU  - Ćirković, Jovana
AU  - Pavlović, Vera P.
AU  - Horváth, Endre
AU  - Forró, László
AU  - Janaćković, Đorđe
AU  - Pavlović, Vladimir B.
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3767
AB  - Semiconductor TiO2 photocatalysis is a heterogeneous catalysis, where the photons of the sun or artificial light source are activating the catalyst that enters in reactions. The targeted real-world applications are in environmental protection and remediation such as wastewater treatment, air purification and decomposition of harmful organic pollutants. In this talk, I present the synthesis of nanotubular, thin TiO2 coatings with altered morphology and crystallinity made by anodization technique. The influence of the anodization parameters and post-synthesis annealing conditions on the photocatalytic methyl orange dye decomposition was assessed. Different morphology, crystallinity and introducing a dopant into lattice increase electron transport and electron lifetime which further improve photocatalytic activity.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and
T1  - Customizing nanotubular titania for photocatalytic activity
EP  - 77
SP  - 77
UR  - https://hdl.handle.net/21.15107/rcub_technorep_3767
ER  - 
@conference{
author = "Vujančević, Jelena and Bjelajac, Anđelika and Ćirković, Jovana and Pavlović, Vera P. and Horváth, Endre and Forró, László and Janaćković, Đorđe and Pavlović, Vladimir B.",
year = "2018",
abstract = "Semiconductor TiO2 photocatalysis is a heterogeneous catalysis, where the photons of the sun or artificial light source are activating the catalyst that enters in reactions. The targeted real-world applications are in environmental protection and remediation such as wastewater treatment, air purification and decomposition of harmful organic pollutants. In this talk, I present the synthesis of nanotubular, thin TiO2 coatings with altered morphology and crystallinity made by anodization technique. The influence of the anodization parameters and post-synthesis annealing conditions on the photocatalytic methyl orange dye decomposition was assessed. Different morphology, crystallinity and introducing a dopant into lattice increase electron transport and electron lifetime which further improve photocatalytic activity.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and",
title = "Customizing nanotubular titania for photocatalytic activity",
pages = "77-77",
url = "https://hdl.handle.net/21.15107/rcub_technorep_3767"
}
Vujančević, J., Bjelajac, A., Ćirković, J., Pavlović, V. P., Horváth, E., Forró, L., Janaćković, Đ.,& Pavlović, V. B.. (2018). Customizing nanotubular titania for photocatalytic activity. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and
Belgrade : Institute of Technical Sciences of SASA., 77-77.
https://hdl.handle.net/21.15107/rcub_technorep_3767
Vujančević J, Bjelajac A, Ćirković J, Pavlović VP, Horváth E, Forró L, Janaćković Đ, Pavlović VB. Customizing nanotubular titania for photocatalytic activity. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and. 2018;:77-77.
https://hdl.handle.net/21.15107/rcub_technorep_3767 .
Vujančević, Jelena, Bjelajac, Anđelika, Ćirković, Jovana, Pavlović, Vera P., Horváth, Endre, Forró, László, Janaćković, Đorđe, Pavlović, Vladimir B., "Customizing nanotubular titania for photocatalytic activity" in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and (2018):77-77,
https://hdl.handle.net/21.15107/rcub_technorep_3767 .

Structure and photocatalytic properties of sintered TiO2 nanotube arrays

Vujančević, Jelena; Bjelajac, Anđelika; Ćirković, Jovana; Pavlović, Vera P.; Horvath, Endre; Forro, Laszlo; Vlahović, Branislav; Mitrić, Miodrag; Janaćković, Đorđe; Pavlović, Vladimir B.

(Međunarodni Institut za nauku o sinterovanju, Beograd, 2018)

TY  - JOUR
AU  - Vujančević, Jelena
AU  - Bjelajac, Anđelika
AU  - Ćirković, Jovana
AU  - Pavlović, Vera P.
AU  - Horvath, Endre
AU  - Forro, Laszlo
AU  - Vlahović, Branislav
AU  - Mitrić, Miodrag
AU  - Janaćković, Đorđe
AU  - Pavlović, Vladimir B.
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4032
AB  - One-dimensional (1D) TiO2 nanotubes perpendicular to the substrate were obtained by electrochemical oxidation of titanium foil in an acid electrolyte. In order to alter the crystallinity and the morphology of films the as-anodized amorphous TiO2 nanotube films were sintered at elevated temperatures. The evolution of the morphology was visualized via scanning electron microscopy (SEM), while the crystalline structure was investigated by Xray diffraction (XRD) and Raman spectroscopy. The chemical composition was studied by Xray photoelectron spectroscopy (XPS). The effects of crystallinity and morphology of TiO2 nanotube (NTs) films on photocatalytic degradation of methyl orange (MO) in an aqueous solution under UV light irradiation were also investigated. The TiO2 nanotubes sintered at 650 degrees C for 30 min had the highest degree of crystallinity and exhibited the best photocatalytic activity among the studied TiO2 nanotube films.
PB  - Međunarodni Institut za nauku o sinterovanju, Beograd
T2  - Science of Sintering
T1  - Structure and photocatalytic properties of sintered TiO2 nanotube arrays
EP  - 50
IS  - 1
SP  - 39
VL  - 50
DO  - 10.2298/SOS1801039V
ER  - 
@article{
author = "Vujančević, Jelena and Bjelajac, Anđelika and Ćirković, Jovana and Pavlović, Vera P. and Horvath, Endre and Forro, Laszlo and Vlahović, Branislav and Mitrić, Miodrag and Janaćković, Đorđe and Pavlović, Vladimir B.",
year = "2018",
abstract = "One-dimensional (1D) TiO2 nanotubes perpendicular to the substrate were obtained by electrochemical oxidation of titanium foil in an acid electrolyte. In order to alter the crystallinity and the morphology of films the as-anodized amorphous TiO2 nanotube films were sintered at elevated temperatures. The evolution of the morphology was visualized via scanning electron microscopy (SEM), while the crystalline structure was investigated by Xray diffraction (XRD) and Raman spectroscopy. The chemical composition was studied by Xray photoelectron spectroscopy (XPS). The effects of crystallinity and morphology of TiO2 nanotube (NTs) films on photocatalytic degradation of methyl orange (MO) in an aqueous solution under UV light irradiation were also investigated. The TiO2 nanotubes sintered at 650 degrees C for 30 min had the highest degree of crystallinity and exhibited the best photocatalytic activity among the studied TiO2 nanotube films.",
publisher = "Međunarodni Institut za nauku o sinterovanju, Beograd",
journal = "Science of Sintering",
title = "Structure and photocatalytic properties of sintered TiO2 nanotube arrays",
pages = "50-39",
number = "1",
volume = "50",
doi = "10.2298/SOS1801039V"
}
Vujančević, J., Bjelajac, A., Ćirković, J., Pavlović, V. P., Horvath, E., Forro, L., Vlahović, B., Mitrić, M., Janaćković, Đ.,& Pavlović, V. B.. (2018). Structure and photocatalytic properties of sintered TiO2 nanotube arrays. in Science of Sintering
Međunarodni Institut za nauku o sinterovanju, Beograd., 50(1), 39-50.
https://doi.org/10.2298/SOS1801039V
Vujančević J, Bjelajac A, Ćirković J, Pavlović VP, Horvath E, Forro L, Vlahović B, Mitrić M, Janaćković Đ, Pavlović VB. Structure and photocatalytic properties of sintered TiO2 nanotube arrays. in Science of Sintering. 2018;50(1):39-50.
doi:10.2298/SOS1801039V .
Vujančević, Jelena, Bjelajac, Anđelika, Ćirković, Jovana, Pavlović, Vera P., Horvath, Endre, Forro, Laszlo, Vlahović, Branislav, Mitrić, Miodrag, Janaćković, Đorđe, Pavlović, Vladimir B., "Structure and photocatalytic properties of sintered TiO2 nanotube arrays" in Science of Sintering, 50, no. 1 (2018):39-50,
https://doi.org/10.2298/SOS1801039V . .
8
9
11

Fabrication and applications of multifunctional nanostructured TiO2

Vujančević, Jelena; Bjelajac, Anđelika; Pavlović, Vera P.; Vlahović, Branislav; Janaćković, Đorđe; Pavlović, Vladimir B.

(Belgrade : Faculty of Agriculture, Department for Agricultural Engineering, 2017)

TY  - CONF
AU  - Vujančević, Jelena
AU  - Bjelajac, Anđelika
AU  - Pavlović, Vera P.
AU  - Vlahović, Branislav
AU  - Janaćković, Đorđe
AU  - Pavlović, Vladimir B.
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3479
AB  - Nanomaterials development is a rapidly emerging field of research with enormous potential for societal and economic benefits. In agro and food industries dimension-dependent properties or phenomena of nanomaterials may be used for various functional effects such as increased bioavailability or decreased toxicity of products, better detection of pathogens, improved food packaging materials, or improved delivery of nutrients. Since these effects may derive from altered or unique characteristics of materials in the nanoscale range that are not normally observed or expected in larger-scale materials with the same chemical composition, such changes raise questions about the safety, effectiveness, performance, quality or public health impact of nanotechnology products. In this article, we have reviewed the fabrication, properties, and selected applications of nanostructured TiO2 based materials. Special attention has been paid to TiO2 nanoparticles and nanotubes fabrication perspectives and applications in agriculture. We have shown that high photocatalytic disinfection and photobiological effects of nanostructured TiO2 coupled with its low price, nontoxicity, and stable performance especially provide new approaches for solving environmental pollution and pesticide residue problems in agriculture.
PB  - Belgrade : Faculty of Agriculture, Department for Agricultural Engineering
C3  - Book of Abstracts / The Third International Symposium on Agricultural Engineering, ISAE-2017, 20th-2
T1  - Fabrication and applications of multifunctional nanostructured TiO2
EP  - 44
SP  - 44
UR  - https://hdl.handle.net/21.15107/rcub_technorep_3479
ER  - 
@conference{
author = "Vujančević, Jelena and Bjelajac, Anđelika and Pavlović, Vera P. and Vlahović, Branislav and Janaćković, Đorđe and Pavlović, Vladimir B.",
year = "2017",
abstract = "Nanomaterials development is a rapidly emerging field of research with enormous potential for societal and economic benefits. In agro and food industries dimension-dependent properties or phenomena of nanomaterials may be used for various functional effects such as increased bioavailability or decreased toxicity of products, better detection of pathogens, improved food packaging materials, or improved delivery of nutrients. Since these effects may derive from altered or unique characteristics of materials in the nanoscale range that are not normally observed or expected in larger-scale materials with the same chemical composition, such changes raise questions about the safety, effectiveness, performance, quality or public health impact of nanotechnology products. In this article, we have reviewed the fabrication, properties, and selected applications of nanostructured TiO2 based materials. Special attention has been paid to TiO2 nanoparticles and nanotubes fabrication perspectives and applications in agriculture. We have shown that high photocatalytic disinfection and photobiological effects of nanostructured TiO2 coupled with its low price, nontoxicity, and stable performance especially provide new approaches for solving environmental pollution and pesticide residue problems in agriculture.",
publisher = "Belgrade : Faculty of Agriculture, Department for Agricultural Engineering",
journal = "Book of Abstracts / The Third International Symposium on Agricultural Engineering, ISAE-2017, 20th-2",
title = "Fabrication and applications of multifunctional nanostructured TiO2",
pages = "44-44",
url = "https://hdl.handle.net/21.15107/rcub_technorep_3479"
}
Vujančević, J., Bjelajac, A., Pavlović, V. P., Vlahović, B., Janaćković, Đ.,& Pavlović, V. B.. (2017). Fabrication and applications of multifunctional nanostructured TiO2. in Book of Abstracts / The Third International Symposium on Agricultural Engineering, ISAE-2017, 20th-2
Belgrade : Faculty of Agriculture, Department for Agricultural Engineering., 44-44.
https://hdl.handle.net/21.15107/rcub_technorep_3479
Vujančević J, Bjelajac A, Pavlović VP, Vlahović B, Janaćković Đ, Pavlović VB. Fabrication and applications of multifunctional nanostructured TiO2. in Book of Abstracts / The Third International Symposium on Agricultural Engineering, ISAE-2017, 20th-2. 2017;:44-44.
https://hdl.handle.net/21.15107/rcub_technorep_3479 .
Vujančević, Jelena, Bjelajac, Anđelika, Pavlović, Vera P., Vlahović, Branislav, Janaćković, Đorđe, Pavlović, Vladimir B., "Fabrication and applications of multifunctional nanostructured TiO2" in Book of Abstracts / The Third International Symposium on Agricultural Engineering, ISAE-2017, 20th-2 (2017):44-44,
https://hdl.handle.net/21.15107/rcub_technorep_3479 .

Fabrication and applications of multifunctional nanostructured TiO2

Vujančević, Jelena; Bjelajac, Anđelika; Pavlović, Vera P.; Vlahović, Branislav; Janaćković, Đorđe; Pavlović, Vladimir B.

(Belgrade : Faculty of Agriculture, Department for Agricultural Engineering, 2017)

TY  - CONF
AU  - Vujančević, Jelena
AU  - Bjelajac, Anđelika
AU  - Pavlović, Vera P.
AU  - Vlahović, Branislav
AU  - Janaćković, Đorđe
AU  - Pavlović, Vladimir B.
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3487
AB  - Nanomaterials development is a rapidly emerging field of research with enormous potential for societal and economic benefits. In agro and food industries dimension-dependent properties or phenomena of nanomaterials may be used for various functional effects such as increased bioavailability or decreased toxicity of products, better detection of pathogens, improved food packaging materials, or improved delivery of nutrients. Since these effects may derive from altered or unique characteristics of materials in the nanoscale range that are not normally observed or expected in larger-scale materials with the same chemical composition, such changes raise questions about the safety, effectiveness, performance, quality or public health impact of nanotechnology products. In this article, we have reviewed the fabrication, properties, and selected applications of nanostructured TiO2 based materials. Special attention has been paid to TiO2 nanoparticles and nanotubes fabrication perspectives and applications in agriculture. We have shown that high photocatalytic disinfection and photobiological effects of nanostructured TiO2 coupled with its low price, nontoxicity, and stable performance especially provide new approaches for solving environmental pollution and pesticide residue problems in agriculture.
PB  - Belgrade : Faculty of Agriculture, Department for Agricultural Engineering
C3  - Proceedings / The Third International Symposium on Agricultural Engineering, ISAE-2017, October, 20t
T1  - Fabrication and applications of multifunctional nanostructured TiO2
EP  - VII - 18
SP  - VII - 10
UR  - https://hdl.handle.net/21.15107/rcub_technorep_3487
ER  - 
@conference{
author = "Vujančević, Jelena and Bjelajac, Anđelika and Pavlović, Vera P. and Vlahović, Branislav and Janaćković, Đorđe and Pavlović, Vladimir B.",
year = "2017",
abstract = "Nanomaterials development is a rapidly emerging field of research with enormous potential for societal and economic benefits. In agro and food industries dimension-dependent properties or phenomena of nanomaterials may be used for various functional effects such as increased bioavailability or decreased toxicity of products, better detection of pathogens, improved food packaging materials, or improved delivery of nutrients. Since these effects may derive from altered or unique characteristics of materials in the nanoscale range that are not normally observed or expected in larger-scale materials with the same chemical composition, such changes raise questions about the safety, effectiveness, performance, quality or public health impact of nanotechnology products. In this article, we have reviewed the fabrication, properties, and selected applications of nanostructured TiO2 based materials. Special attention has been paid to TiO2 nanoparticles and nanotubes fabrication perspectives and applications in agriculture. We have shown that high photocatalytic disinfection and photobiological effects of nanostructured TiO2 coupled with its low price, nontoxicity, and stable performance especially provide new approaches for solving environmental pollution and pesticide residue problems in agriculture.",
publisher = "Belgrade : Faculty of Agriculture, Department for Agricultural Engineering",
journal = "Proceedings / The Third International Symposium on Agricultural Engineering, ISAE-2017, October, 20t",
title = "Fabrication and applications of multifunctional nanostructured TiO2",
pages = "VII - 18-VII - 10",
url = "https://hdl.handle.net/21.15107/rcub_technorep_3487"
}
Vujančević, J., Bjelajac, A., Pavlović, V. P., Vlahović, B., Janaćković, Đ.,& Pavlović, V. B.. (2017). Fabrication and applications of multifunctional nanostructured TiO2. in Proceedings / The Third International Symposium on Agricultural Engineering, ISAE-2017, October, 20t
Belgrade : Faculty of Agriculture, Department for Agricultural Engineering., VII - 10-VII - 18.
https://hdl.handle.net/21.15107/rcub_technorep_3487
Vujančević J, Bjelajac A, Pavlović VP, Vlahović B, Janaćković Đ, Pavlović VB. Fabrication and applications of multifunctional nanostructured TiO2. in Proceedings / The Third International Symposium on Agricultural Engineering, ISAE-2017, October, 20t. 2017;:VII - 10-VII - 18.
https://hdl.handle.net/21.15107/rcub_technorep_3487 .
Vujančević, Jelena, Bjelajac, Anđelika, Pavlović, Vera P., Vlahović, Branislav, Janaćković, Đorđe, Pavlović, Vladimir B., "Fabrication and applications of multifunctional nanostructured TiO2" in Proceedings / The Third International Symposium on Agricultural Engineering, ISAE-2017, October, 20t (2017):VII - 10-VII - 18,
https://hdl.handle.net/21.15107/rcub_technorep_3487 .

Tailoring self-ordering TiO2 nanotube arrays by oxidative anodization

Vujančević, Jelena; Đokić, Veljko; Bjelajac, Anđelika; Pavlović, Vera P.; Mitrić, Miodrag; Janaćković, Đorđe; Pavlović, Vladimir B.

(Belgrade : Institute of Technical Sciences of SASA, 2015)

TY  - CONF
AU  - Vujančević, Jelena
AU  - Đokić, Veljko
AU  - Bjelajac, Anđelika
AU  - Pavlović, Vera P.
AU  - Mitrić, Miodrag
AU  - Janaćković, Đorđe
AU  - Pavlović, Vladimir B.
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2870
AB  - Having in mind that anodic oxidation method can be used for tailoring desired structure and morphology of TiO2, herein the synthesis of self-ordered TiO2 nanotubes via electrochemical anodization of high purity Ti foil is reported. The influence of synthesis parameters such as oxidative voltage, different electrolyte, annealing temperature and annealing atmosphere were explored and correlate with obtained TiO2 nanotube arrays. The results show that applied potential is the main factor that controls the diameter of the nanotubes, while annealing temperature influence on crystal type and morphology is related to different contents of electrolyte. Investigated method gives opportunity to enhanced performance of TiO2 nanotubes, providing many applications in different field.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and
T1  - Tailoring self-ordering TiO2 nanotube arrays by oxidative anodization
EP  - 18
SP  - 18
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7545
ER  - 
@conference{
author = "Vujančević, Jelena and Đokić, Veljko and Bjelajac, Anđelika and Pavlović, Vera P. and Mitrić, Miodrag and Janaćković, Đorđe and Pavlović, Vladimir B.",
year = "2015",
abstract = "Having in mind that anodic oxidation method can be used for tailoring desired structure and morphology of TiO2, herein the synthesis of self-ordered TiO2 nanotubes via electrochemical anodization of high purity Ti foil is reported. The influence of synthesis parameters such as oxidative voltage, different electrolyte, annealing temperature and annealing atmosphere were explored and correlate with obtained TiO2 nanotube arrays. The results show that applied potential is the main factor that controls the diameter of the nanotubes, while annealing temperature influence on crystal type and morphology is related to different contents of electrolyte. Investigated method gives opportunity to enhanced performance of TiO2 nanotubes, providing many applications in different field.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and",
title = "Tailoring self-ordering TiO2 nanotube arrays by oxidative anodization",
pages = "18-18",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7545"
}
Vujančević, J., Đokić, V., Bjelajac, A., Pavlović, V. P., Mitrić, M., Janaćković, Đ.,& Pavlović, V. B.. (2015). Tailoring self-ordering TiO2 nanotube arrays by oxidative anodization. in Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and
Belgrade : Institute of Technical Sciences of SASA., 18-18.
https://hdl.handle.net/21.15107/rcub_vinar_7545
Vujančević J, Đokić V, Bjelajac A, Pavlović VP, Mitrić M, Janaćković Đ, Pavlović VB. Tailoring self-ordering TiO2 nanotube arrays by oxidative anodization. in Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and. 2015;:18-18.
https://hdl.handle.net/21.15107/rcub_vinar_7545 .
Vujančević, Jelena, Đokić, Veljko, Bjelajac, Anđelika, Pavlović, Vera P., Mitrić, Miodrag, Janaćković, Đorđe, Pavlović, Vladimir B., "Tailoring self-ordering TiO2 nanotube arrays by oxidative anodization" in Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and (2015):18-18,
https://hdl.handle.net/21.15107/rcub_vinar_7545 .

Influence of Synthesis Parameters on Structure of 1-D TiO2 nanostructures

Vujančević, Jelena; Bjelajac, Anđelika; Obradović, Nina; Pavlović, Vera P.; Mitrić, Miodrag; Janaćković, Đorđe; Rašić, Goran; Vlahović, Branislav; Pavlović, Vladimir B.

(Belgrade : Serbian Ceramic Society, 2015)

TY  - CONF
AU  - Vujančević, Jelena
AU  - Bjelajac, Anđelika
AU  - Obradović, Nina
AU  - Pavlović, Vera P.
AU  - Mitrić, Miodrag
AU  - Janaćković, Đorđe
AU  - Rašić, Goran
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2864
AB  - The influence of electrochemical conditions and the heat treatment on the crystal structure and the microstructure evolution of TiO2 based nanotubes synthesized by the self-ordering anodization process is investigated in this work. The electrochemical anodization was performed at room temperature, for 30 minutes under 15, 20 and 25 V, with stirring. The as-anodized Ti foils were annealed in air at 450, 600, 650 and 700 °C for 30 minutes. The structure and the lattice dynamics of the samples has been studied by using XRD and Raman spectroscopy methods. The microstructure development of the 1-D TiO2 nanostructures has been analyzed by FESEM.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing
T1  - Influence of Synthesis Parameters on Structure of 1-D TiO2 nanostructures
EP  - 81
SP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7527
ER  - 
@conference{
author = "Vujančević, Jelena and Bjelajac, Anđelika and Obradović, Nina and Pavlović, Vera P. and Mitrić, Miodrag and Janaćković, Đorđe and Rašić, Goran and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2015",
abstract = "The influence of electrochemical conditions and the heat treatment on the crystal structure and the microstructure evolution of TiO2 based nanotubes synthesized by the self-ordering anodization process is investigated in this work. The electrochemical anodization was performed at room temperature, for 30 minutes under 15, 20 and 25 V, with stirring. The as-anodized Ti foils were annealed in air at 450, 600, 650 and 700 °C for 30 minutes. The structure and the lattice dynamics of the samples has been studied by using XRD and Raman spectroscopy methods. The microstructure development of the 1-D TiO2 nanostructures has been analyzed by FESEM.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing",
title = "Influence of Synthesis Parameters on Structure of 1-D TiO2 nanostructures",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7527"
}
Vujančević, J., Bjelajac, A., Obradović, N., Pavlović, V. P., Mitrić, M., Janaćković, Đ., Rašić, G., Vlahović, B.,& Pavlović, V. B.. (2015). Influence of Synthesis Parameters on Structure of 1-D TiO2 nanostructures. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing
Belgrade : Serbian Ceramic Society., 81-81.
https://hdl.handle.net/21.15107/rcub_vinar_7527
Vujančević J, Bjelajac A, Obradović N, Pavlović VP, Mitrić M, Janaćković Đ, Rašić G, Vlahović B, Pavlović VB. Influence of Synthesis Parameters on Structure of 1-D TiO2 nanostructures. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing. 2015;:81-81.
https://hdl.handle.net/21.15107/rcub_vinar_7527 .
Vujančević, Jelena, Bjelajac, Anđelika, Obradović, Nina, Pavlović, Vera P., Mitrić, Miodrag, Janaćković, Đorđe, Rašić, Goran, Vlahović, Branislav, Pavlović, Vladimir B., "Influence of Synthesis Parameters on Structure of 1-D TiO2 nanostructures" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing (2015):81-81,
https://hdl.handle.net/21.15107/rcub_vinar_7527 .