Đokić, Jovana

Link to this page

Authority KeyName Variants
orcid::0000-0001-6949-668X
  • Đokić, Jovana (5)
Projects

Author's Bibliography

Investigating possibilities for synthesis of novel sorbents and catalyst carriers based on ceramics with controlled open porosity

Nikolić, Vesna; Đokić, Jovana; Kamberović, Željko; Marinković, Aleksandar; Jevtić, Sanja; Anđić, Zoran

(2022)

TY  - JOUR
AU  - Nikolić, Vesna
AU  - Đokić, Jovana
AU  - Kamberović, Željko
AU  - Marinković, Aleksandar
AU  - Jevtić, Sanja
AU  - Anđić, Zoran
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5192
AB  - The aim of this study was to investigate a possibility of synthesis of porous ceramics with controlled open porosity, which could be used as sorbents and catalyst supports. Two organic additives were used to obtain open porosity: polystyrene beads and cellulose fibers, which are mixed with kaolin clay powder and the appropriate water content. Samples were sintered at 1050 oC for 1 h. Characterization of the obtained products included X-ray powder diffraction analysis (XRPD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and elemental CHNS analysis. In addition, porosity was examined by quantification of visual information. The specific surface areas were determined by the Brunauer–Emmett–Teller (BET) method. Also, density and compressive strength of the obtained samples were assessed. It was determined that by sintering, the organic component completely leaves the system. For samples prepared with polystyrene beads and with cellulose fibers, satisfactory mechanical properties were obtained: compressive strengths were 1.42 and 1.56 MPa, respectively. It was noted that significantly higher open porosity was obtained by using polystyrene beads as a sacrificial template (porosity of ~56 %) instead of cellulose fibers (porosity of ~6 %).
T2  - Hemijska industrija
T1  - Investigating possibilities for synthesis of novel sorbents and catalyst carriers based on ceramics with controlled open porosity
T1  - Ispitivanje mogućnosti sinteze inovativnih sorbenata i nosača katalizatora na bazi keramike kontrolisane otvorene poroznosti
EP  - 95
IS  - 2
SP  - 87
VL  - 76
DO  - 10.2298/HEMIND210809005N
ER  - 
@article{
author = "Nikolić, Vesna and Đokić, Jovana and Kamberović, Željko and Marinković, Aleksandar and Jevtić, Sanja and Anđić, Zoran",
year = "2022",
abstract = "The aim of this study was to investigate a possibility of synthesis of porous ceramics with controlled open porosity, which could be used as sorbents and catalyst supports. Two organic additives were used to obtain open porosity: polystyrene beads and cellulose fibers, which are mixed with kaolin clay powder and the appropriate water content. Samples were sintered at 1050 oC for 1 h. Characterization of the obtained products included X-ray powder diffraction analysis (XRPD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and elemental CHNS analysis. In addition, porosity was examined by quantification of visual information. The specific surface areas were determined by the Brunauer–Emmett–Teller (BET) method. Also, density and compressive strength of the obtained samples were assessed. It was determined that by sintering, the organic component completely leaves the system. For samples prepared with polystyrene beads and with cellulose fibers, satisfactory mechanical properties were obtained: compressive strengths were 1.42 and 1.56 MPa, respectively. It was noted that significantly higher open porosity was obtained by using polystyrene beads as a sacrificial template (porosity of ~56 %) instead of cellulose fibers (porosity of ~6 %).",
journal = "Hemijska industrija",
title = "Investigating possibilities for synthesis of novel sorbents and catalyst carriers based on ceramics with controlled open porosity, Ispitivanje mogućnosti sinteze inovativnih sorbenata i nosača katalizatora na bazi keramike kontrolisane otvorene poroznosti",
pages = "95-87",
number = "2",
volume = "76",
doi = "10.2298/HEMIND210809005N"
}
Nikolić, V., Đokić, J., Kamberović, Ž., Marinković, A., Jevtić, S.,& Anđić, Z.. (2022). Investigating possibilities for synthesis of novel sorbents and catalyst carriers based on ceramics with controlled open porosity. in Hemijska industrija, 76(2), 87-95.
https://doi.org/10.2298/HEMIND210809005N
Nikolić V, Đokić J, Kamberović Ž, Marinković A, Jevtić S, Anđić Z. Investigating possibilities for synthesis of novel sorbents and catalyst carriers based on ceramics with controlled open porosity. in Hemijska industrija. 2022;76(2):87-95.
doi:10.2298/HEMIND210809005N .
Nikolić, Vesna, Đokić, Jovana, Kamberović, Željko, Marinković, Aleksandar, Jevtić, Sanja, Anđić, Zoran, "Investigating possibilities for synthesis of novel sorbents and catalyst carriers based on ceramics with controlled open porosity" in Hemijska industrija, 76, no. 2 (2022):87-95,
https://doi.org/10.2298/HEMIND210809005N . .

Leaching of metastannic acid from e-waste by-products

Đokić, Jovana; Jovančićević, Branimir; Brčeski, Ilija; Ranitović, Milisav; Gajić, Nataša; Kamberović, Željko

(Springer, New York, 2020)

TY  - JOUR
AU  - Đokić, Jovana
AU  - Jovančićević, Branimir
AU  - Brčeski, Ilija
AU  - Ranitović, Milisav
AU  - Gajić, Nataša
AU  - Kamberović, Željko
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4522
AB  - Anode slime and tin precipitate as by-products of the electrorefining (ER) of non-standard anodes obtained after experimental smelting of waste electric and electronic equipment (e-waste), in addition to the base and precious metals, contains a significant amount of tin. Due to its presence as inert SnO(2)hydrate (beta metastannic acid) and its dissipation between slime and electrolyte, anode slime processing and metals valorization are difficult. This study aimed to investigate conditions under which efficient leaching of metastannic acid could be achieved to facilitate further metals valorization, especially precious metals. The investigation was performed using the by-products obtained from the ER of the non-standard Cu anodes produced by pyrometallurgical processing of e-waste. After detailed characterization of obtained products, the influence of various process parameters like temperature, acid concentration, leaching time, as well as the influence of reducing agent, sulfur compounds, and SnO(2)hydration rate on leaching efficiency was investigated. It was found that efficiency of 99% can be achieved by leaching the desulfurized tin precipitate sample in 6 M HCl at 90 degrees C for 90 min with the addition of Mg powder. The application of the tin removal process, described in this paper, contributes to efficient material flow management. [GRAPHICS] .
PB  - Springer, New York
T2  - Journal of Material Cycles and Waste Management
T1  - Leaching of metastannic acid from e-waste by-products
EP  - 1912
IS  - 6
SP  - 1899
VL  - 22
DO  - 10.1007/s10163-020-01076-5
ER  - 
@article{
author = "Đokić, Jovana and Jovančićević, Branimir and Brčeski, Ilija and Ranitović, Milisav and Gajić, Nataša and Kamberović, Željko",
year = "2020",
abstract = "Anode slime and tin precipitate as by-products of the electrorefining (ER) of non-standard anodes obtained after experimental smelting of waste electric and electronic equipment (e-waste), in addition to the base and precious metals, contains a significant amount of tin. Due to its presence as inert SnO(2)hydrate (beta metastannic acid) and its dissipation between slime and electrolyte, anode slime processing and metals valorization are difficult. This study aimed to investigate conditions under which efficient leaching of metastannic acid could be achieved to facilitate further metals valorization, especially precious metals. The investigation was performed using the by-products obtained from the ER of the non-standard Cu anodes produced by pyrometallurgical processing of e-waste. After detailed characterization of obtained products, the influence of various process parameters like temperature, acid concentration, leaching time, as well as the influence of reducing agent, sulfur compounds, and SnO(2)hydration rate on leaching efficiency was investigated. It was found that efficiency of 99% can be achieved by leaching the desulfurized tin precipitate sample in 6 M HCl at 90 degrees C for 90 min with the addition of Mg powder. The application of the tin removal process, described in this paper, contributes to efficient material flow management. [GRAPHICS] .",
publisher = "Springer, New York",
journal = "Journal of Material Cycles and Waste Management",
title = "Leaching of metastannic acid from e-waste by-products",
pages = "1912-1899",
number = "6",
volume = "22",
doi = "10.1007/s10163-020-01076-5"
}
Đokić, J., Jovančićević, B., Brčeski, I., Ranitović, M., Gajić, N.,& Kamberović, Ž.. (2020). Leaching of metastannic acid from e-waste by-products. in Journal of Material Cycles and Waste Management
Springer, New York., 22(6), 1899-1912.
https://doi.org/10.1007/s10163-020-01076-5
Đokić J, Jovančićević B, Brčeski I, Ranitović M, Gajić N, Kamberović Ž. Leaching of metastannic acid from e-waste by-products. in Journal of Material Cycles and Waste Management. 2020;22(6):1899-1912.
doi:10.1007/s10163-020-01076-5 .
Đokić, Jovana, Jovančićević, Branimir, Brčeski, Ilija, Ranitović, Milisav, Gajić, Nataša, Kamberović, Željko, "Leaching of metastannic acid from e-waste by-products" in Journal of Material Cycles and Waste Management, 22, no. 6 (2020):1899-1912,
https://doi.org/10.1007/s10163-020-01076-5 . .
4
2
4

Recyclability of technology metals from E-waste: Case study of in and Ga recovery from magnetic fraction

Ranitović, Milisav; Đokić, Jovana; Korać, Marija; Gajić, Nataša; Dimitrijević, Stevan

(Association of Metallurgical Engineers of Serbia, 2019)

TY  - JOUR
AU  - Ranitović, Milisav
AU  - Đokić, Jovana
AU  - Korać, Marija
AU  - Gajić, Nataša
AU  - Dimitrijević, Stevan
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4077
AB  - This study presents the results of the theoretical assessment and a preliminary experimental investigation of technology metals (TM) recovery from magnetic fraction obtained after mechanical treatment of waste printed circuit boards (WPCBs). Experimental work included physical and chemical characterization, thermodynamic analysis, and pyrometallurgical tests corresponding to secondary lead, copper, and steel metallurgy. Technology metals recyclability and recovery potential were evaluated with respect to their distribution between metal and slag phase (difficult for recovering) versus the dust phase (easy for recovering). According to obtained results, it was determined that high-temperature processing of magnetic fraction in the electric arc furnace promotes volatilization of the TM and their pre-concentration in the filter as a dust product from which they could be valorized using further hydrometallurgical methods.
PB  - Association of Metallurgical Engineers of Serbia
T2  - Metallurgical and Materials Engineering
T1  - Recyclability of technology metals from E-waste: Case study of in and Ga recovery from magnetic fraction
EP  - 194
IS  - 3
SP  - 183
VL  - 25
DO  - 10.30544/446
ER  - 
@article{
author = "Ranitović, Milisav and Đokić, Jovana and Korać, Marija and Gajić, Nataša and Dimitrijević, Stevan",
year = "2019",
abstract = "This study presents the results of the theoretical assessment and a preliminary experimental investigation of technology metals (TM) recovery from magnetic fraction obtained after mechanical treatment of waste printed circuit boards (WPCBs). Experimental work included physical and chemical characterization, thermodynamic analysis, and pyrometallurgical tests corresponding to secondary lead, copper, and steel metallurgy. Technology metals recyclability and recovery potential were evaluated with respect to their distribution between metal and slag phase (difficult for recovering) versus the dust phase (easy for recovering). According to obtained results, it was determined that high-temperature processing of magnetic fraction in the electric arc furnace promotes volatilization of the TM and their pre-concentration in the filter as a dust product from which they could be valorized using further hydrometallurgical methods.",
publisher = "Association of Metallurgical Engineers of Serbia",
journal = "Metallurgical and Materials Engineering",
title = "Recyclability of technology metals from E-waste: Case study of in and Ga recovery from magnetic fraction",
pages = "194-183",
number = "3",
volume = "25",
doi = "10.30544/446"
}
Ranitović, M., Đokić, J., Korać, M., Gajić, N.,& Dimitrijević, S.. (2019). Recyclability of technology metals from E-waste: Case study of in and Ga recovery from magnetic fraction. in Metallurgical and Materials Engineering
Association of Metallurgical Engineers of Serbia., 25(3), 183-194.
https://doi.org/10.30544/446
Ranitović M, Đokić J, Korać M, Gajić N, Dimitrijević S. Recyclability of technology metals from E-waste: Case study of in and Ga recovery from magnetic fraction. in Metallurgical and Materials Engineering. 2019;25(3):183-194.
doi:10.30544/446 .
Ranitović, Milisav, Đokić, Jovana, Korać, Marija, Gajić, Nataša, Dimitrijević, Stevan, "Recyclability of technology metals from E-waste: Case study of in and Ga recovery from magnetic fraction" in Metallurgical and Materials Engineering, 25, no. 3 (2019):183-194,
https://doi.org/10.30544/446 . .
1

Production of technology metals from waste electronics

Mandić, Maja; Đokić, Jovana; Gajić, Nataša; Uljarević, Jelena; Kamberović, Željko

(Institut za istrazivanja i projektovanja u privredi, 2019)

TY  - JOUR
AU  - Mandić, Maja
AU  - Đokić, Jovana
AU  - Gajić, Nataša
AU  - Uljarević, Jelena
AU  - Kamberović, Željko
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4289
AB  - The rising criticality of technologically inevitably metals and the continuous growth of the waste electronics promote a scientific need for development of innovative recycling process, both efficient and selective. Experimental results showed primarily that by pyrometallurgical treatment it is difficult to achieve selectivity, and secondary that the distribution of metals in melting products is too complicated, deviating from the experiential and expected. Therefore, application of an integral pyro - hydrometallurgical treatment is suggested for improved raw materials efficiency. Successful implementation of the developed state-of-art technological process, guarantee more efficient approach to recycling processes, production of new materials which supports the concepts of sustainable development and cleaner production. Proposed technological solution is applicable in industry with relatively low investments compared to expected revenues, allowing companies to become competitive in the regional market and beyond, which is particularly important for small and medium enterprises with lower operating capacities. Techno-economic justification and integral pyro - hydrometallurgical process for waste electronics recycling is presented. This paper explains measures for the further development of the recycling industry as a part of circular economy strategy in Serbia.
PB  - Institut za istrazivanja i projektovanja u privredi
T2  - Journal of Applied Engineering Science
T1  - Production of technology metals from waste electronics
EP  - 403
IS  - 3
SP  - 400
VL  - 17
DO  - 10.5937/jaes17-22105
ER  - 
@article{
author = "Mandić, Maja and Đokić, Jovana and Gajić, Nataša and Uljarević, Jelena and Kamberović, Željko",
year = "2019",
abstract = "The rising criticality of technologically inevitably metals and the continuous growth of the waste electronics promote a scientific need for development of innovative recycling process, both efficient and selective. Experimental results showed primarily that by pyrometallurgical treatment it is difficult to achieve selectivity, and secondary that the distribution of metals in melting products is too complicated, deviating from the experiential and expected. Therefore, application of an integral pyro - hydrometallurgical treatment is suggested for improved raw materials efficiency. Successful implementation of the developed state-of-art technological process, guarantee more efficient approach to recycling processes, production of new materials which supports the concepts of sustainable development and cleaner production. Proposed technological solution is applicable in industry with relatively low investments compared to expected revenues, allowing companies to become competitive in the regional market and beyond, which is particularly important for small and medium enterprises with lower operating capacities. Techno-economic justification and integral pyro - hydrometallurgical process for waste electronics recycling is presented. This paper explains measures for the further development of the recycling industry as a part of circular economy strategy in Serbia.",
publisher = "Institut za istrazivanja i projektovanja u privredi",
journal = "Journal of Applied Engineering Science",
title = "Production of technology metals from waste electronics",
pages = "403-400",
number = "3",
volume = "17",
doi = "10.5937/jaes17-22105"
}
Mandić, M., Đokić, J., Gajić, N., Uljarević, J.,& Kamberović, Ž.. (2019). Production of technology metals from waste electronics. in Journal of Applied Engineering Science
Institut za istrazivanja i projektovanja u privredi., 17(3), 400-403.
https://doi.org/10.5937/jaes17-22105
Mandić M, Đokić J, Gajić N, Uljarević J, Kamberović Ž. Production of technology metals from waste electronics. in Journal of Applied Engineering Science. 2019;17(3):400-403.
doi:10.5937/jaes17-22105 .
Mandić, Maja, Đokić, Jovana, Gajić, Nataša, Uljarević, Jelena, Kamberović, Željko, "Production of technology metals from waste electronics" in Journal of Applied Engineering Science, 17, no. 3 (2019):400-403,
https://doi.org/10.5937/jaes17-22105 . .
3

Hydrometallurgical Process for Selective Metals Recovery from Waste-Printed Circuit Boards

Kamberović, Željko; Ranitović, Milisav; Korać, Marija; Anđić, Zoran; Gajić, Nataša; Đokić, Jovana; Jevtić, Sanja

(MDPI, Basel, 2018)

TY  - JOUR
AU  - Kamberović, Željko
AU  - Ranitović, Milisav
AU  - Korać, Marija
AU  - Anđić, Zoran
AU  - Gajić, Nataša
AU  - Đokić, Jovana
AU  - Jevtić, Sanja
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3896
AB  - This paper presents an experimentally-proved hydrometallurgical process for selective metals recovery from the waste-printed circuit boards (WPCBs) using a combination of conventional and time-saving methods: leaching, cementation, precipitation, reduction and electrowinning. According to the results obtained in the laboratory tests, 92.4% Cu, 98.5% Pb, 96.8% Ag and over 99% Au could be selectively leached and recovered using mineral acids: sulfuric, nitric and aqua regia. Problematic tin recovery was addressed with comprehensive theoretical and experimental work, so 55.4% of Sn could be recovered through the novel physical method, which consists of two-step phase separation. Based on the results, an integral hydrometallurgical route for selective base and precious metals recovery though consecutive steps, (i) Cu, (ii) Sn, (iii) Pb and Ag, and (iv) Au, was developed. The route was tested at scaled-up laboratory level, confirming feasibility of the process and efficiencies of metals recovery. According to the obtained results, the proposed hydrometallurgical route represents an innovative and promising method for selective metals recovery from WPCBs, particularly applicable in small scale hydrometallurgical environments, focused on medium and high grade WPCBs recycling.
PB  - MDPI, Basel
T2  - Metals
T1  - Hydrometallurgical Process for Selective Metals Recovery from Waste-Printed Circuit Boards
IS  - 6
VL  - 8
DO  - 10.3390/met8060441
ER  - 
@article{
author = "Kamberović, Željko and Ranitović, Milisav and Korać, Marija and Anđić, Zoran and Gajić, Nataša and Đokić, Jovana and Jevtić, Sanja",
year = "2018",
abstract = "This paper presents an experimentally-proved hydrometallurgical process for selective metals recovery from the waste-printed circuit boards (WPCBs) using a combination of conventional and time-saving methods: leaching, cementation, precipitation, reduction and electrowinning. According to the results obtained in the laboratory tests, 92.4% Cu, 98.5% Pb, 96.8% Ag and over 99% Au could be selectively leached and recovered using mineral acids: sulfuric, nitric and aqua regia. Problematic tin recovery was addressed with comprehensive theoretical and experimental work, so 55.4% of Sn could be recovered through the novel physical method, which consists of two-step phase separation. Based on the results, an integral hydrometallurgical route for selective base and precious metals recovery though consecutive steps, (i) Cu, (ii) Sn, (iii) Pb and Ag, and (iv) Au, was developed. The route was tested at scaled-up laboratory level, confirming feasibility of the process and efficiencies of metals recovery. According to the obtained results, the proposed hydrometallurgical route represents an innovative and promising method for selective metals recovery from WPCBs, particularly applicable in small scale hydrometallurgical environments, focused on medium and high grade WPCBs recycling.",
publisher = "MDPI, Basel",
journal = "Metals",
title = "Hydrometallurgical Process for Selective Metals Recovery from Waste-Printed Circuit Boards",
number = "6",
volume = "8",
doi = "10.3390/met8060441"
}
Kamberović, Ž., Ranitović, M., Korać, M., Anđić, Z., Gajić, N., Đokić, J.,& Jevtić, S.. (2018). Hydrometallurgical Process for Selective Metals Recovery from Waste-Printed Circuit Boards. in Metals
MDPI, Basel., 8(6).
https://doi.org/10.3390/met8060441
Kamberović Ž, Ranitović M, Korać M, Anđić Z, Gajić N, Đokić J, Jevtić S. Hydrometallurgical Process for Selective Metals Recovery from Waste-Printed Circuit Boards. in Metals. 2018;8(6).
doi:10.3390/met8060441 .
Kamberović, Željko, Ranitović, Milisav, Korać, Marija, Anđić, Zoran, Gajić, Nataša, Đokić, Jovana, Jevtić, Sanja, "Hydrometallurgical Process for Selective Metals Recovery from Waste-Printed Circuit Boards" in Metals, 8, no. 6 (2018),
https://doi.org/10.3390/met8060441 . .
26
9
27