Fidanovski, Bojana Z.

Link to this page

Authority KeyName Variants
eb95e716-f50b-4ad8-8939-9f98eeb772bd
  • Fidanovski, Bojana Z. (3)
  • Fidanovski, Bojana (2)
Projects

Author's Bibliography

Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites

Obradović, Vera; Bajić, Danica; Sejkot, Petr; Fidanovski, Bojana; Machalická, Klára V.; Vokáč, Miroslav

(Royal Society of Chemistry, 2021)

TY  - CONF
AU  - Obradović, Vera
AU  - Bajić, Danica
AU  - Sejkot, Petr
AU  - Fidanovski, Bojana
AU  - Machalická, Klára V.
AU  - Vokáč, Miroslav
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7076
AB  - The para-aramid fibres (Kevlar, Twaron, Kolon) are high performance polymeric fibres characterized by their high tenacity, strength to weight ratio and impact resistance. They are used for the soft body armour structures in ballistics and for the manufacture of parts in aerospace and automotive industry.
In this study, the specimens were made from the two-layered Kolon fabrics impregnated with epoxy resin where some silicon carbide (SiC) microparticles or SiC nanofibres were added as reinforcement. These composite specimens
were fabricated by hot compression and curing of epoxy resin.
Despite their good mechanical strength it is a well-known fact that the mechanical properties of epoxy resins are affected by moisture absorption. The tensile and impact properties of the untreated specimens were compared with the ones that underwent water absorption in the duration of 72h (immersion or humidity) followed by desorption. The immersion of the specimens in water and the exposure to high humidity (70%) were completed in accordance with the ISO 62 standard while the tensile test was performed according to the ASTM D 3039 standard. Furthermore, the tensile test simulation of the Kolon/epoxy composite by using software Abaqus® was accomplished.
For the determination of the absorbed impact energy and the impact toughness of the composite specimens, an impact test was performed by using the Charpy impact pendulum in accordance with the ASTM D5942 standard.
PB  - Royal Society of Chemistry
C3  - Book of poster Abstracts / 15th International conference on materials chemistry (MC15) - online, United Kingdom, July 12-15, 2021
T1  - Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites
SP  - P104
UR  - https://hdl.handle.net/21.15107/rcub_technorep_7076
ER  - 
@conference{
author = "Obradović, Vera and Bajić, Danica and Sejkot, Petr and Fidanovski, Bojana and Machalická, Klára V. and Vokáč, Miroslav",
year = "2021",
abstract = "The para-aramid fibres (Kevlar, Twaron, Kolon) are high performance polymeric fibres characterized by their high tenacity, strength to weight ratio and impact resistance. They are used for the soft body armour structures in ballistics and for the manufacture of parts in aerospace and automotive industry.
In this study, the specimens were made from the two-layered Kolon fabrics impregnated with epoxy resin where some silicon carbide (SiC) microparticles or SiC nanofibres were added as reinforcement. These composite specimens
were fabricated by hot compression and curing of epoxy resin.
Despite their good mechanical strength it is a well-known fact that the mechanical properties of epoxy resins are affected by moisture absorption. The tensile and impact properties of the untreated specimens were compared with the ones that underwent water absorption in the duration of 72h (immersion or humidity) followed by desorption. The immersion of the specimens in water and the exposure to high humidity (70%) were completed in accordance with the ISO 62 standard while the tensile test was performed according to the ASTM D 3039 standard. Furthermore, the tensile test simulation of the Kolon/epoxy composite by using software Abaqus® was accomplished.
For the determination of the absorbed impact energy and the impact toughness of the composite specimens, an impact test was performed by using the Charpy impact pendulum in accordance with the ASTM D5942 standard.",
publisher = "Royal Society of Chemistry",
journal = "Book of poster Abstracts / 15th International conference on materials chemistry (MC15) - online, United Kingdom, July 12-15, 2021",
title = "Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites",
pages = "P104",
url = "https://hdl.handle.net/21.15107/rcub_technorep_7076"
}
Obradović, V., Bajić, D., Sejkot, P., Fidanovski, B., Machalická, K. V.,& Vokáč, M.. (2021). Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites. in Book of poster Abstracts / 15th International conference on materials chemistry (MC15) - online, United Kingdom, July 12-15, 2021
Royal Society of Chemistry., P104.
https://hdl.handle.net/21.15107/rcub_technorep_7076
Obradović V, Bajić D, Sejkot P, Fidanovski B, Machalická KV, Vokáč M. Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites. in Book of poster Abstracts / 15th International conference on materials chemistry (MC15) - online, United Kingdom, July 12-15, 2021. 2021;:P104.
https://hdl.handle.net/21.15107/rcub_technorep_7076 .
Obradović, Vera, Bajić, Danica, Sejkot, Petr, Fidanovski, Bojana, Machalická, Klára V., Vokáč, Miroslav, "Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites" in Book of poster Abstracts / 15th International conference on materials chemistry (MC15) - online, United Kingdom, July 12-15, 2021 (2021):P104,
https://hdl.handle.net/21.15107/rcub_technorep_7076 .

WS2 nanostructures as thermo-mechanical reinforcement of composite materials for advanced applications

Bajić, Danica M.; Fidanovski, Bojana; Radisavljević, Igor; Bogosavljević, Marica; Totovski, Ljubica; Stojanović, Dušica B.

(2021)

TY  - CONF
AU  - Bajić, Danica M.
AU  - Fidanovski, Bojana
AU  - Radisavljević, Igor
AU  - Bogosavljević, Marica
AU  - Totovski, Ljubica
AU  - Stojanović, Dušica B.
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6933
AB  - As one of transition metal dichalogenides, tungsten disulphide (WS2) is well known for its solid
lubricating behavior, but besides this feature, it exhibits extraordinary thermal stability and mechanical
resistance. The outstanding mechanical strength of WS2 is most pronounced when it comes in form of
multi-layer hollow nanoparticles and nanotubes: inorganic fullerene-like nanoparticles and inorganic
nanotubes, denoted as IF-WS2 and INT-WS2, respectively. These structures have extraordinary shock resistance
properties, pressure and heat resistance, that can be exploited for a variety of applications. They have been
studied as reinforcing fillers of various polymers, but they might be also added as reinforcement of matrix in
more complex composites, like CFRPs. Our research aimed to examine their reinforcing effect on laminated
composites based on aramid fabric and poly(vinyl butyral), PVB, intended for demanding applications: in
personal protection equipment, ballistic protection, sports equipment, automotive, nautical and aircraft
engineering. WS2 nanostructures have been incorporated in PVB by temporary dissolving in ethanol, by
ultrasonication and intensive mechanical mixing. After impregnation of aramid fabrics ethanol would
evaporate, and layers of aramid with thermoplastic binder PVB would be integrated by hot pressing. SEM
analysis confirms the uniform distribution of WS2 nanostructures in the prepared composite material. DSC
analysis reveals the effect of WS2 addition on thermal resistance of the new material, while PVB/aramid
mechanical resistance was examined using DMA, impact test and tensile test. IF- WS2 has imported higher
thermal resistance and ductility improvement, while INT-WS2 has significantly improved tensile and impact
strength of the composite.
C3  - Abstract Book / 3 rd Edition of Materials Science and Nanoscience Webinar, V-Mat2021, September 17-18, 2021
T1  - WS2 nanostructures as thermo-mechanical reinforcement of composite materials for advanced applications
SP  - 40
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6933
ER  - 
@conference{
author = "Bajić, Danica M. and Fidanovski, Bojana and Radisavljević, Igor and Bogosavljević, Marica and Totovski, Ljubica and Stojanović, Dušica B.",
year = "2021",
abstract = "As one of transition metal dichalogenides, tungsten disulphide (WS2) is well known for its solid
lubricating behavior, but besides this feature, it exhibits extraordinary thermal stability and mechanical
resistance. The outstanding mechanical strength of WS2 is most pronounced when it comes in form of
multi-layer hollow nanoparticles and nanotubes: inorganic fullerene-like nanoparticles and inorganic
nanotubes, denoted as IF-WS2 and INT-WS2, respectively. These structures have extraordinary shock resistance
properties, pressure and heat resistance, that can be exploited for a variety of applications. They have been
studied as reinforcing fillers of various polymers, but they might be also added as reinforcement of matrix in
more complex composites, like CFRPs. Our research aimed to examine their reinforcing effect on laminated
composites based on aramid fabric and poly(vinyl butyral), PVB, intended for demanding applications: in
personal protection equipment, ballistic protection, sports equipment, automotive, nautical and aircraft
engineering. WS2 nanostructures have been incorporated in PVB by temporary dissolving in ethanol, by
ultrasonication and intensive mechanical mixing. After impregnation of aramid fabrics ethanol would
evaporate, and layers of aramid with thermoplastic binder PVB would be integrated by hot pressing. SEM
analysis confirms the uniform distribution of WS2 nanostructures in the prepared composite material. DSC
analysis reveals the effect of WS2 addition on thermal resistance of the new material, while PVB/aramid
mechanical resistance was examined using DMA, impact test and tensile test. IF- WS2 has imported higher
thermal resistance and ductility improvement, while INT-WS2 has significantly improved tensile and impact
strength of the composite.",
journal = "Abstract Book / 3 rd Edition of Materials Science and Nanoscience Webinar, V-Mat2021, September 17-18, 2021",
title = "WS2 nanostructures as thermo-mechanical reinforcement of composite materials for advanced applications",
pages = "40",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6933"
}
Bajić, D. M., Fidanovski, B., Radisavljević, I., Bogosavljević, M., Totovski, L.,& Stojanović, D. B.. (2021). WS2 nanostructures as thermo-mechanical reinforcement of composite materials for advanced applications. in Abstract Book / 3 rd Edition of Materials Science and Nanoscience Webinar, V-Mat2021, September 17-18, 2021, 40.
https://hdl.handle.net/21.15107/rcub_technorep_6933
Bajić DM, Fidanovski B, Radisavljević I, Bogosavljević M, Totovski L, Stojanović DB. WS2 nanostructures as thermo-mechanical reinforcement of composite materials for advanced applications. in Abstract Book / 3 rd Edition of Materials Science and Nanoscience Webinar, V-Mat2021, September 17-18, 2021. 2021;:40.
https://hdl.handle.net/21.15107/rcub_technorep_6933 .
Bajić, Danica M., Fidanovski, Bojana, Radisavljević, Igor, Bogosavljević, Marica, Totovski, Ljubica, Stojanović, Dušica B., "WS2 nanostructures as thermo-mechanical reinforcement of composite materials for advanced applications" in Abstract Book / 3 rd Edition of Materials Science and Nanoscience Webinar, V-Mat2021, September 17-18, 2021 (2021):40,
https://hdl.handle.net/21.15107/rcub_technorep_6933 .

Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2

Samolov, Aleksandra D.; Simic, Danica M.; Fidanovski, Bojana Z.; Obradović, Vera; Tomic, Ljubisa D.; Knezevic, Dragan M.

(2021)

TY  - JOUR
AU  - Samolov, Aleksandra D.
AU  - Simic, Danica M.
AU  - Fidanovski, Bojana Z.
AU  - Obradović, Vera
AU  - Tomic, Ljubisa D.
AU  - Knezevic, Dragan M.
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4824
AB  - In order to examine the possibility to improve its camouflage properties standard cotton fabric with camouflage print was impregnated with poly(vinyl butyral), PVB and fullerene-like nanoparticles of tungsten disulfide, PVB/IF-WS2. FTIR analysis excluded any possible chemical interaction of IF-WS2 with PVB and the fabric. The camouflage behavior of the impregnated fabric has been examined firstly in the VIS part of the spectrum. Diffuse reflection, specular gloss and color coordinates were measured for three different shades (black, brown and dark green). Thermal imaging was applied to examine the camouflage abilities of this impregnation in IR part of the spectrum. The obtained results show that PVB/IF-WS2 impregnation system induced enhacement of the materials camouflage properties, i.e. that IF-WS2 have a positive effect on spectrophotometric characteristics of the fabric. (c) 2020 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
T2  - Defence Technology
T1  - Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2
EP  - 2056
IS  - 6
SP  - 2050
VL  - 17
DO  - 10.1016/j.dt.2020.10.008
ER  - 
@article{
author = "Samolov, Aleksandra D. and Simic, Danica M. and Fidanovski, Bojana Z. and Obradović, Vera and Tomic, Ljubisa D. and Knezevic, Dragan M.",
year = "2021",
abstract = "In order to examine the possibility to improve its camouflage properties standard cotton fabric with camouflage print was impregnated with poly(vinyl butyral), PVB and fullerene-like nanoparticles of tungsten disulfide, PVB/IF-WS2. FTIR analysis excluded any possible chemical interaction of IF-WS2 with PVB and the fabric. The camouflage behavior of the impregnated fabric has been examined firstly in the VIS part of the spectrum. Diffuse reflection, specular gloss and color coordinates were measured for three different shades (black, brown and dark green). Thermal imaging was applied to examine the camouflage abilities of this impregnation in IR part of the spectrum. The obtained results show that PVB/IF-WS2 impregnation system induced enhacement of the materials camouflage properties, i.e. that IF-WS2 have a positive effect on spectrophotometric characteristics of the fabric. (c) 2020 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).",
journal = "Defence Technology",
title = "Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2",
pages = "2056-2050",
number = "6",
volume = "17",
doi = "10.1016/j.dt.2020.10.008"
}
Samolov, A. D., Simic, D. M., Fidanovski, B. Z., Obradović, V., Tomic, L. D.,& Knezevic, D. M.. (2021). Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2. in Defence Technology, 17(6), 2050-2056.
https://doi.org/10.1016/j.dt.2020.10.008
Samolov AD, Simic DM, Fidanovski BZ, Obradović V, Tomic LD, Knezevic DM. Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2. in Defence Technology. 2021;17(6):2050-2056.
doi:10.1016/j.dt.2020.10.008 .
Samolov, Aleksandra D., Simic, Danica M., Fidanovski, Bojana Z., Obradović, Vera, Tomic, Ljubisa D., Knezevic, Dragan M., "Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2" in Defence Technology, 17, no. 6 (2021):2050-2056,
https://doi.org/10.1016/j.dt.2020.10.008 . .
6
1
1

Synthesis and characterization of fully bio-based unsaturated polyester resins

Fidanovski, Bojana Z.; Spasojević, Pavle; Panić, Vesna; Šeslija, Sanja I.; Spasojević, Jelena P.; Popović, Ivanka

(Springer, New York, 2018)

TY  - JOUR
AU  - Fidanovski, Bojana Z.
AU  - Spasojević, Pavle
AU  - Panić, Vesna
AU  - Šeslija, Sanja I.
AU  - Spasojević, Jelena P.
AU  - Popović, Ivanka
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3977
AB  - The sustainable tomorrow for future generations lies with the present industrial development toward the proper utilization of various bio-based products. For a transition to a higher level of sustainability, it is necessary to form a new platform for advanced technology products. This paper reports the development of new fully bio-based unsaturated polyesters resins (UPRs). A series of prepolymers were synthesized by varying saturated diacids (oxalic, succinic and adipic acid), itaconic acid and 1,2-propandiol. Dimethyl itaconate was used as a reactive diluent (RD) in amounts of 30, 35 and 40 wt%. Rheological measurements showed that the obtained resins possessed viscosities (234-2226 mPa s) amenable to a variety of liquid molding techniques. The impact of composition variables-prepolymer structure and amount of RD-on the chemical, mechanical and thermal properties of the thermosets was examined by DMA, TA and tensile measurements and was discussed in detail. The tensile properties (37-52 MPa), glass transition temperature (60-97 A degrees C) and coefficient of thermal expansion (71-168 10(-6) A degrees C-1) of the cured resins were in the desired range for UPRs. This investigation showed that UPRs based on itaconic acid can be tailored during synthesis of the prepolymer to meet the needs of different property profiles.
PB  - Springer, New York
T2  - Journal of Materials Science
T1  - Synthesis and characterization of fully bio-based unsaturated polyester resins
EP  - 4644
IS  - 6
SP  - 4635
VL  - 53
DO  - 10.1007/s10853-017-1822-y
ER  - 
@article{
author = "Fidanovski, Bojana Z. and Spasojević, Pavle and Panić, Vesna and Šeslija, Sanja I. and Spasojević, Jelena P. and Popović, Ivanka",
year = "2018",
abstract = "The sustainable tomorrow for future generations lies with the present industrial development toward the proper utilization of various bio-based products. For a transition to a higher level of sustainability, it is necessary to form a new platform for advanced technology products. This paper reports the development of new fully bio-based unsaturated polyesters resins (UPRs). A series of prepolymers were synthesized by varying saturated diacids (oxalic, succinic and adipic acid), itaconic acid and 1,2-propandiol. Dimethyl itaconate was used as a reactive diluent (RD) in amounts of 30, 35 and 40 wt%. Rheological measurements showed that the obtained resins possessed viscosities (234-2226 mPa s) amenable to a variety of liquid molding techniques. The impact of composition variables-prepolymer structure and amount of RD-on the chemical, mechanical and thermal properties of the thermosets was examined by DMA, TA and tensile measurements and was discussed in detail. The tensile properties (37-52 MPa), glass transition temperature (60-97 A degrees C) and coefficient of thermal expansion (71-168 10(-6) A degrees C-1) of the cured resins were in the desired range for UPRs. This investigation showed that UPRs based on itaconic acid can be tailored during synthesis of the prepolymer to meet the needs of different property profiles.",
publisher = "Springer, New York",
journal = "Journal of Materials Science",
title = "Synthesis and characterization of fully bio-based unsaturated polyester resins",
pages = "4644-4635",
number = "6",
volume = "53",
doi = "10.1007/s10853-017-1822-y"
}
Fidanovski, B. Z., Spasojević, P., Panić, V., Šeslija, S. I., Spasojević, J. P.,& Popović, I.. (2018). Synthesis and characterization of fully bio-based unsaturated polyester resins. in Journal of Materials Science
Springer, New York., 53(6), 4635-4644.
https://doi.org/10.1007/s10853-017-1822-y
Fidanovski BZ, Spasojević P, Panić V, Šeslija SI, Spasojević JP, Popović I. Synthesis and characterization of fully bio-based unsaturated polyester resins. in Journal of Materials Science. 2018;53(6):4635-4644.
doi:10.1007/s10853-017-1822-y .
Fidanovski, Bojana Z., Spasojević, Pavle, Panić, Vesna, Šeslija, Sanja I., Spasojević, Jelena P., Popović, Ivanka, "Synthesis and characterization of fully bio-based unsaturated polyester resins" in Journal of Materials Science, 53, no. 6 (2018):4635-4644,
https://doi.org/10.1007/s10853-017-1822-y . .
3
40
14
39

Composite materials from fully bio-based thermosetting resins and recycled waste poly(ethylene terephthalate)

Fidanovski, Bojana Z.; Popović, Ivanka; Radojević, Vesna; Radisavijević, Igor Z.; Perišić, Srđan; Spasojević, Pavle

(Elsevier Sci Ltd, Oxford, 2018)

TY  - JOUR
AU  - Fidanovski, Bojana Z.
AU  - Popović, Ivanka
AU  - Radojević, Vesna
AU  - Radisavijević, Igor Z.
AU  - Perišić, Srđan
AU  - Spasojević, Pavle
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3949
AB  - During the last two decades, interest in bio-based polymers, especially in bio-based composite materials, has grown as a result of environmental concerns. In this paper new composites obtained from fully bio-based unsaturated polyester resin (UPR) and waste poly(ethylene terephthalate) (PET) were studied for the first time. The composites were prepared by crosslinking the UPR in the presence of functionalized PET particles (3, 6 and 9 wt %), using dimethyl itaconate as reactive diluent. The results showed that the incorporation of the PET particles led to the increase in mechanical properties. However, higher PET loading caused a decrease in the mechanical properties of the composites because of the PET particle agglomeration.
PB  - Elsevier Sci Ltd, Oxford
T2  - Composites Part B-Engineering
T1  - Composite materials from fully bio-based thermosetting resins and recycled waste poly(ethylene terephthalate)
EP  - 123
SP  - 117
VL  - 153
DO  - 10.1016/j.compositesb.2018.07.034
ER  - 
@article{
author = "Fidanovski, Bojana Z. and Popović, Ivanka and Radojević, Vesna and Radisavijević, Igor Z. and Perišić, Srđan and Spasojević, Pavle",
year = "2018",
abstract = "During the last two decades, interest in bio-based polymers, especially in bio-based composite materials, has grown as a result of environmental concerns. In this paper new composites obtained from fully bio-based unsaturated polyester resin (UPR) and waste poly(ethylene terephthalate) (PET) were studied for the first time. The composites were prepared by crosslinking the UPR in the presence of functionalized PET particles (3, 6 and 9 wt %), using dimethyl itaconate as reactive diluent. The results showed that the incorporation of the PET particles led to the increase in mechanical properties. However, higher PET loading caused a decrease in the mechanical properties of the composites because of the PET particle agglomeration.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Composites Part B-Engineering",
title = "Composite materials from fully bio-based thermosetting resins and recycled waste poly(ethylene terephthalate)",
pages = "123-117",
volume = "153",
doi = "10.1016/j.compositesb.2018.07.034"
}
Fidanovski, B. Z., Popović, I., Radojević, V., Radisavijević, I. Z., Perišić, S.,& Spasojević, P.. (2018). Composite materials from fully bio-based thermosetting resins and recycled waste poly(ethylene terephthalate). in Composites Part B-Engineering
Elsevier Sci Ltd, Oxford., 153, 117-123.
https://doi.org/10.1016/j.compositesb.2018.07.034
Fidanovski BZ, Popović I, Radojević V, Radisavijević IZ, Perišić S, Spasojević P. Composite materials from fully bio-based thermosetting resins and recycled waste poly(ethylene terephthalate). in Composites Part B-Engineering. 2018;153:117-123.
doi:10.1016/j.compositesb.2018.07.034 .
Fidanovski, Bojana Z., Popović, Ivanka, Radojević, Vesna, Radisavijević, Igor Z., Perišić, Srđan, Spasojević, Pavle, "Composite materials from fully bio-based thermosetting resins and recycled waste poly(ethylene terephthalate)" in Composites Part B-Engineering, 153 (2018):117-123,
https://doi.org/10.1016/j.compositesb.2018.07.034 . .
28
15
26