Popović, Ana L.

Link to this page

Authority KeyName Variants
00c90e0f-3245-4275-9f0c-a04364c8e860
  • Popović, Ana L. (2)
Projects

Author's Bibliography

Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres

Popović, Ana L.; Rusmirović, Jelena; Veličković, Zlate; Kovacević, T.; Jovanović, Aleksandar; Cvijetić, Ilija; Marinković, Aleksandar

(Elsevier Science Inc, New York, 2021)

TY  - JOUR
AU  - Popović, Ana L.
AU  - Rusmirović, Jelena
AU  - Veličković, Zlate
AU  - Kovacević, T.
AU  - Jovanović, Aleksandar
AU  - Cvijetić, Ilija
AU  - Marinković, Aleksandar
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4583
AB  - In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13)>>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g−1). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g−1)), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS bio-based adsorbent.
PB  - Elsevier Science Inc, New York
T2  - Journal of Industrial and Engineering Chemistry
T1  - Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres
EP  - 314
SP  - 302
VL  - 93
DO  - 10.1016/j.jiec.2020.10.006
ER  - 
@article{
author = "Popović, Ana L. and Rusmirović, Jelena and Veličković, Zlate and Kovacević, T. and Jovanović, Aleksandar and Cvijetić, Ilija and Marinković, Aleksandar",
year = "2021",
abstract = "In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13)>>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g−1). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g−1)), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS bio-based adsorbent.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Industrial and Engineering Chemistry",
title = "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres",
pages = "314-302",
volume = "93",
doi = "10.1016/j.jiec.2020.10.006"
}
Popović, A. L., Rusmirović, J., Veličković, Z., Kovacević, T., Jovanović, A., Cvijetić, I.,& Marinković, A.. (2021). Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry
Elsevier Science Inc, New York., 93, 302-314.
https://doi.org/10.1016/j.jiec.2020.10.006
Popović AL, Rusmirović J, Veličković Z, Kovacević T, Jovanović A, Cvijetić I, Marinković A. Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry. 2021;93:302-314.
doi:10.1016/j.jiec.2020.10.006 .
Popović, Ana L., Rusmirović, Jelena, Veličković, Zlate, Kovacević, T., Jovanović, Aleksandar, Cvijetić, Ilija, Marinković, Aleksandar, "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres" in Journal of Industrial and Engineering Chemistry, 93 (2021):302-314,
https://doi.org/10.1016/j.jiec.2020.10.006 . .
39
14
41

Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal

Popović, Ana L.; Rusmirović, Jelena; Veličković, Zlate; Radovanović, Željko; Ristić, Mirjana; Pavlović, Vera P.; Marinković, Aleksandar

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Popović, Ana L.
AU  - Rusmirović, Jelena
AU  - Veličković, Zlate
AU  - Radovanović, Željko
AU  - Ristić, Mirjana
AU  - Pavlović, Vera P.
AU  - Marinković, Aleksandar
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4540
AB  - Novel highly effective amino-functionalized lignin-based biosorbent in the microsphere geometry (A-LMS) for removal of heavy metal ions, was synthesized via inverse suspension copolymerization of kraft lignin with poly(ethylene imine) grafting-agent and epoxy chloropropane cross-linker. Optimization of A-LMS synthesis, performed with respect to the quantity of sodium alginate emulsifier (1, 5 and 10 wt%), provides highly porous microspheres A-LMS_5, using 5 wt% emulsifier, with 800 +/- 80 mu m diameter, 7.68 m(2) g(-1) surface area and 7.7 mmol g(-1) of terminal amino groups. Structural and surface characteristics were obtained from Brunauer-Emmett-Teller method, Fourier Transform-Infrared spectroscopy, scanning electron microscopy, X-ray photo-electron spectroscopy and porosity determination. In a batch test, the influence of pH, A-LMS_5 dose, temperature, contact time on adsorption efficiency of Ni2+, Cd2+, As(V) and Cr(VI) ions were studied. The adsorption is spontaneous and feasible with maximum adsorption capacity of 74.84, 54.20, 53.12 and 49.42 mg g(-1) for Cd2+, Cr(VI), As(V) and Ni2+ ions, respectively, obtained by using Langmuir model. Modeling of kinetic data indicated fast adsorbate removal rate with pore diffusional transport as rate limiting step (pseudo-second order model and Weber-Morris equations), thus further confirming high performances of produced bio-adsorbent for heavy metal ions removal.
PB  - Elsevier, Amsterdam
T2  - International Journal of Biological Macromolecules
T1  - Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal
EP  - 1173
SP  - 1160
VL  - 156
DO  - 10.1016/j.ijbiomac.2019.11.152
ER  - 
@article{
author = "Popović, Ana L. and Rusmirović, Jelena and Veličković, Zlate and Radovanović, Željko and Ristić, Mirjana and Pavlović, Vera P. and Marinković, Aleksandar",
year = "2020",
abstract = "Novel highly effective amino-functionalized lignin-based biosorbent in the microsphere geometry (A-LMS) for removal of heavy metal ions, was synthesized via inverse suspension copolymerization of kraft lignin with poly(ethylene imine) grafting-agent and epoxy chloropropane cross-linker. Optimization of A-LMS synthesis, performed with respect to the quantity of sodium alginate emulsifier (1, 5 and 10 wt%), provides highly porous microspheres A-LMS_5, using 5 wt% emulsifier, with 800 +/- 80 mu m diameter, 7.68 m(2) g(-1) surface area and 7.7 mmol g(-1) of terminal amino groups. Structural and surface characteristics were obtained from Brunauer-Emmett-Teller method, Fourier Transform-Infrared spectroscopy, scanning electron microscopy, X-ray photo-electron spectroscopy and porosity determination. In a batch test, the influence of pH, A-LMS_5 dose, temperature, contact time on adsorption efficiency of Ni2+, Cd2+, As(V) and Cr(VI) ions were studied. The adsorption is spontaneous and feasible with maximum adsorption capacity of 74.84, 54.20, 53.12 and 49.42 mg g(-1) for Cd2+, Cr(VI), As(V) and Ni2+ ions, respectively, obtained by using Langmuir model. Modeling of kinetic data indicated fast adsorbate removal rate with pore diffusional transport as rate limiting step (pseudo-second order model and Weber-Morris equations), thus further confirming high performances of produced bio-adsorbent for heavy metal ions removal.",
publisher = "Elsevier, Amsterdam",
journal = "International Journal of Biological Macromolecules",
title = "Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal",
pages = "1173-1160",
volume = "156",
doi = "10.1016/j.ijbiomac.2019.11.152"
}
Popović, A. L., Rusmirović, J., Veličković, Z., Radovanović, Ž., Ristić, M., Pavlović, V. P.,& Marinković, A.. (2020). Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal. in International Journal of Biological Macromolecules
Elsevier, Amsterdam., 156, 1160-1173.
https://doi.org/10.1016/j.ijbiomac.2019.11.152
Popović AL, Rusmirović J, Veličković Z, Radovanović Ž, Ristić M, Pavlović VP, Marinković A. Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal. in International Journal of Biological Macromolecules. 2020;156:1160-1173.
doi:10.1016/j.ijbiomac.2019.11.152 .
Popović, Ana L., Rusmirović, Jelena, Veličković, Zlate, Radovanović, Željko, Ristić, Mirjana, Pavlović, Vera P., Marinković, Aleksandar, "Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal" in International Journal of Biological Macromolecules, 156 (2020):1160-1173,
https://doi.org/10.1016/j.ijbiomac.2019.11.152 . .
1
53
15
53