Show simple item record

dc.creatorDjokic, Jovana
dc.creatorRadovanović, Dragana
dc.creatorNikolovski, Zlatko
dc.creatorAndjic, Zoran
dc.creatorKamberović, Željko
dc.date.accessioned2022-03-04T11:16:36Z
dc.date.available2022-03-04T11:16:36Z
dc.date.issued2021
dc.identifier.issn2075-4701
dc.identifier.urihttp://TechnoRep.tmf.bg.ac.rs/handle/123456789/4795
dc.description.abstractIn order to reflect possible issues in future sole e-waste processing, an electrolyte of complex chemical composition reflecting system of sole e-waste processing was obtained by following a specially designed pyro-electrometallurgical method. The obtained non-standard electrolyte was further used for the purpose of comprehensive metal interference evaluation on the copper solvent extraction (SX) process. Optimization of the process included a variation of several process parameters, allowing determination of the effect of the most abundant and potentially the most influential impurities (Ni, Sn, Fe, and Zn) and 14 other trace elements. Moreover, comparing three commercial extractants of different active chelating groups, it was determined that branched aldoxime reagent is favorable for Cu extraction from the chemically complex system, as can be expected in future e-waste recycling. The results of this study showed that, under optimal conditions of 20 vol.% extractant concentration, feed pH 1.5, O/A ratio 3, and 10-min phase contact time, 88.1% of one stage Cu extraction was achieved. Co-extraction of the Fe, Zn, Ni, and Sn was under 8%, while Pb and trace elements were negligible. Optimal conditions (H2SO4 180 g/L, O/A = 2, and contact time 5 min) enabled 95.3% Cu stripping and under 6% of the most influential impurities. In addition, an impurity monitoring and distribution methodology enabled a better understanding and design of the process for the more efficient valorization of metals from e-waste.en
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200288/RS//
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceMetals
dc.subjecte-wasteen
dc.subjectelectrolyte recyclingen
dc.subjectsolvent extractionen
dc.subjectchelating extractantsen
dc.subjectcopperen
dc.subjectimpurities influenceen
dc.subjectmetal distributionen
dc.titleInfluence of Electrolyte Impurities from E-Waste Electrorefining on Copper Extraction Recoveryen
dc.typearticle
dc.rights.licenseBY
dc.citation.issue9
dc.citation.other11(9): -
dc.citation.rankM21
dc.citation.volume11
dc.identifier.doi10.3390/met11091383
dc.identifier.fulltexthttp://TechnoRep.tmf.bg.ac.rs/bitstream/id/7873/Influence_of_electrolyte_pub_2021.pdf
dc.identifier.scopus2-s2.0-85114104220
dc.identifier.wos000701399800001
dc.type.versionpublishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record