Vasiljević, D.

Link to this page

Authority KeyName Variants
d648193c-c22c-4e19-8d8f-4787a487d093
  • Vasiljević, D. (1)
Projects

Author's Bibliography

Nanoindentation study of nickel manganite ceramics obtained by a complex polymerization method

Savić, Slavica M.; Stojanović, G.; Vasiljević, D.; Vojisavljević, K.; Dapčević, Aleksandra; Radojković, Aleksandar; Prsić, S.; Branković, Goran

(Elsevier Sci Ltd, Oxford, 2016)

TY  - JOUR
AU  - Savić, Slavica M.
AU  - Stojanović, G.
AU  - Vasiljević, D.
AU  - Vojisavljević, K.
AU  - Dapčević, Aleksandra
AU  - Radojković, Aleksandar
AU  - Prsić, S.
AU  - Branković, Goran
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3286
AB  - The chemical synthesis of nickel manganite powder was performed by a complex polymerization method (CPM). The obtained fine nanoscaled powders were uniaxially pressed and sintered at different temperatures: 1000-1200 degrees C for 2 h, and different atmospheres: air and oxygen. The highest density was obtained for the sample sintered at 1200 degrees C in oxygen atmosphere. The energy for direct band gap transition (Eg) calculated from the Tauc plot decreases from 1.51 to 1.40 eV with the increase of the sintering temperature. Indentation experiments were carried out using a three-sided pyramidal (Berkovich) diamond tip, and Young's modulus of elasticity and hardness of NTC (negative temperature coefficient) ceramics at various indentation depths were calculated. The highest hardness (0.754 GPa) and elastic modulus (16.888 GPa) are exhibited by the ceramics sintered at highest temperature in oxygen atmosphere.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Nanoindentation study of nickel manganite ceramics obtained by a complex polymerization method
EP  - 12282
IS  - 10
SP  - 12276
VL  - 42
DO  - 10.1016/j.ceramint.2016.04.174
ER  - 
@article{
author = "Savić, Slavica M. and Stojanović, G. and Vasiljević, D. and Vojisavljević, K. and Dapčević, Aleksandra and Radojković, Aleksandar and Prsić, S. and Branković, Goran",
year = "2016",
abstract = "The chemical synthesis of nickel manganite powder was performed by a complex polymerization method (CPM). The obtained fine nanoscaled powders were uniaxially pressed and sintered at different temperatures: 1000-1200 degrees C for 2 h, and different atmospheres: air and oxygen. The highest density was obtained for the sample sintered at 1200 degrees C in oxygen atmosphere. The energy for direct band gap transition (Eg) calculated from the Tauc plot decreases from 1.51 to 1.40 eV with the increase of the sintering temperature. Indentation experiments were carried out using a three-sided pyramidal (Berkovich) diamond tip, and Young's modulus of elasticity and hardness of NTC (negative temperature coefficient) ceramics at various indentation depths were calculated. The highest hardness (0.754 GPa) and elastic modulus (16.888 GPa) are exhibited by the ceramics sintered at highest temperature in oxygen atmosphere.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Nanoindentation study of nickel manganite ceramics obtained by a complex polymerization method",
pages = "12282-12276",
number = "10",
volume = "42",
doi = "10.1016/j.ceramint.2016.04.174"
}
Savić, S. M., Stojanović, G., Vasiljević, D., Vojisavljević, K., Dapčević, A., Radojković, A., Prsić, S.,& Branković, G.. (2016). Nanoindentation study of nickel manganite ceramics obtained by a complex polymerization method. in Ceramics International
Elsevier Sci Ltd, Oxford., 42(10), 12276-12282.
https://doi.org/10.1016/j.ceramint.2016.04.174
Savić SM, Stojanović G, Vasiljević D, Vojisavljević K, Dapčević A, Radojković A, Prsić S, Branković G. Nanoindentation study of nickel manganite ceramics obtained by a complex polymerization method. in Ceramics International. 2016;42(10):12276-12282.
doi:10.1016/j.ceramint.2016.04.174 .
Savić, Slavica M., Stojanović, G., Vasiljević, D., Vojisavljević, K., Dapčević, Aleksandra, Radojković, Aleksandar, Prsić, S., Branković, Goran, "Nanoindentation study of nickel manganite ceramics obtained by a complex polymerization method" in Ceramics International, 42, no. 10 (2016):12276-12282,
https://doi.org/10.1016/j.ceramint.2016.04.174 . .
2
1
2