Investigation of intermetallics and semiconductors and possible application in renewable energy sources

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/171001/RS//

Investigation of intermetallics and semiconductors and possible application in renewable energy sources (en)
Истраживање интерметалика и полупроводника и могућа примена у обновљивим изворима енергије (sr)
Istraživanje intermetalika i poluprovodnika i moguća primena u obnovljivim izvorima energije (sr_RS)
Authors

Publications

Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal

Rusmirović, Jelena; Obradović, Nina; Perendija, Jovana; Umićević, Ana; Kapidžić, Ana; Vlahović, Branislav; Pavlović, Vera P.; Marinković, Aleksandar; Pavlović, Vladimir B.

(Springer Heidelberg, Heidelberg, 2019)

TY  - JOUR
AU  - Rusmirović, Jelena
AU  - Obradović, Nina
AU  - Perendija, Jovana
AU  - Umićević, Ana
AU  - Kapidžić, Ana
AU  - Vlahović, Branislav
AU  - Pavlović, Vera P.
AU  - Marinković, Aleksandar
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4223
AB  - Iron oxide, in the form of magnetite (MG)-functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL--APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mossbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456mgg(-1) for WL--APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382mgg(-1) for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL--APS/MG, e.g., 1.17-13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL--APS.
PB  - Springer Heidelberg, Heidelberg
T2  - Environmental Science and Pollution Research
T1  - Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal
EP  - 12398
IS  - 12
SP  - 12379
VL  - 26
DO  - 10.1007/s11356-019-04625-0
ER  - 
@article{
author = "Rusmirović, Jelena and Obradović, Nina and Perendija, Jovana and Umićević, Ana and Kapidžić, Ana and Vlahović, Branislav and Pavlović, Vera P. and Marinković, Aleksandar and Pavlović, Vladimir B.",
year = "2019",
abstract = "Iron oxide, in the form of magnetite (MG)-functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL--APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mossbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456mgg(-1) for WL--APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382mgg(-1) for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL--APS/MG, e.g., 1.17-13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL--APS.",
publisher = "Springer Heidelberg, Heidelberg",
journal = "Environmental Science and Pollution Research",
title = "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal",
pages = "12398-12379",
number = "12",
volume = "26",
doi = "10.1007/s11356-019-04625-0"
}
Rusmirović, J., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V. P., Marinković, A.,& Pavlović, V. B.. (2019). Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research
Springer Heidelberg, Heidelberg., 26(12), 12379-12398.
https://doi.org/10.1007/s11356-019-04625-0
Rusmirović J, Obradović N, Perendija J, Umićević A, Kapidžić A, Vlahović B, Pavlović VP, Marinković A, Pavlović VB. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research. 2019;26(12):12379-12398.
doi:10.1007/s11356-019-04625-0 .
Rusmirović, Jelena, Obradović, Nina, Perendija, Jovana, Umićević, Ana, Kapidžić, Ana, Vlahović, Branislav, Pavlović, Vera P., Marinković, Aleksandar, Pavlović, Vladimir B., "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal" in Environmental Science and Pollution Research, 26, no. 12 (2019):12379-12398,
https://doi.org/10.1007/s11356-019-04625-0 . .
1
11
6
13

Efficient multistep arsenate removal onto magnetite modified fly ash

Karanac, Milica; Đolić, Maja; Veličković, Zlate; Kapidžić, Ana; Ivanovski, Valentin N.; Mitrić, Miodrag; Marinković, Aleksandar

(Academic Press Ltd- Elsevier Science Ltd, London, 2018)

TY  - JOUR
AU  - Karanac, Milica
AU  - Đolić, Maja
AU  - Veličković, Zlate
AU  - Kapidžić, Ana
AU  - Ivanovski, Valentin N.
AU  - Mitrić, Miodrag
AU  - Marinković, Aleksandar
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3877
AB  - The modification of the fly ash (FA) by magnetite (M) was performed to obtain FAM adsorbent with improved adsorption efficiency for arsenate removal from water. The novel low cost adsorbents are characterized by liquid nitrogen porosimetry (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), Mossbauer spectroscopy (MB) and Fourier transform infrared (FTIR) spectroscopy. The optimal conditions and key factors influencing the adsorbent synthesis are assessed using the response surface method (RSM). The adsorption experiment was carried out in a batch system by varying the contact time, temperature, pH, and mass of the adsorbent. The adsorption capacity of the FAM adsorbent for As(V), calculated by Langmuir model, was 19.14 mg g(-1). The thermodynamic parameters showed spontaneity of adsorption with low endothermic character. The kinetic data followed the pseudo-second-order kinetic model (PSO), and Weber-Morris model indicated intra-particle diffusion as rate limiting step. Alternative to low desorption capability of the FAM was found by five consecutive adsorption/magnetite precipitation processes which gave exhausted layered adsorbent with 65.78 mg g(-1) capacity. This research also has shed light on the mechanism of As(V)-ion adsorption, presenting a promising solution for the valorization of a widely abundant industrial waste.
PB  - Academic Press Ltd- Elsevier Science Ltd, London
T2  - Journal of Environmental Management
T1  - Efficient multistep arsenate removal onto magnetite modified fly ash
EP  - 276
SP  - 263
VL  - 224
DO  - 10.1016/j.jenvman.2018.07.051
ER  - 
@article{
author = "Karanac, Milica and Đolić, Maja and Veličković, Zlate and Kapidžić, Ana and Ivanovski, Valentin N. and Mitrić, Miodrag and Marinković, Aleksandar",
year = "2018",
abstract = "The modification of the fly ash (FA) by magnetite (M) was performed to obtain FAM adsorbent with improved adsorption efficiency for arsenate removal from water. The novel low cost adsorbents are characterized by liquid nitrogen porosimetry (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), Mossbauer spectroscopy (MB) and Fourier transform infrared (FTIR) spectroscopy. The optimal conditions and key factors influencing the adsorbent synthesis are assessed using the response surface method (RSM). The adsorption experiment was carried out in a batch system by varying the contact time, temperature, pH, and mass of the adsorbent. The adsorption capacity of the FAM adsorbent for As(V), calculated by Langmuir model, was 19.14 mg g(-1). The thermodynamic parameters showed spontaneity of adsorption with low endothermic character. The kinetic data followed the pseudo-second-order kinetic model (PSO), and Weber-Morris model indicated intra-particle diffusion as rate limiting step. Alternative to low desorption capability of the FAM was found by five consecutive adsorption/magnetite precipitation processes which gave exhausted layered adsorbent with 65.78 mg g(-1) capacity. This research also has shed light on the mechanism of As(V)-ion adsorption, presenting a promising solution for the valorization of a widely abundant industrial waste.",
publisher = "Academic Press Ltd- Elsevier Science Ltd, London",
journal = "Journal of Environmental Management",
title = "Efficient multistep arsenate removal onto magnetite modified fly ash",
pages = "276-263",
volume = "224",
doi = "10.1016/j.jenvman.2018.07.051"
}
Karanac, M., Đolić, M., Veličković, Z., Kapidžić, A., Ivanovski, V. N., Mitrić, M.,& Marinković, A.. (2018). Efficient multistep arsenate removal onto magnetite modified fly ash. in Journal of Environmental Management
Academic Press Ltd- Elsevier Science Ltd, London., 224, 263-276.
https://doi.org/10.1016/j.jenvman.2018.07.051
Karanac M, Đolić M, Veličković Z, Kapidžić A, Ivanovski VN, Mitrić M, Marinković A. Efficient multistep arsenate removal onto magnetite modified fly ash. in Journal of Environmental Management. 2018;224:263-276.
doi:10.1016/j.jenvman.2018.07.051 .
Karanac, Milica, Đolić, Maja, Veličković, Zlate, Kapidžić, Ana, Ivanovski, Valentin N., Mitrić, Miodrag, Marinković, Aleksandar, "Efficient multistep arsenate removal onto magnetite modified fly ash" in Journal of Environmental Management, 224 (2018):263-276,
https://doi.org/10.1016/j.jenvman.2018.07.051 . .
1
33
15
31

The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Cvjetićanin, Nikola; Jokić, Bojan; Umićević, Ana; Uskoković, Dragan

(Elsevier, 2017)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Cvjetićanin, Nikola
AU  - Jokić, Bojan
AU  - Umićević, Ana
AU  - Uskoković, Dragan
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5856
AB  - Low intrinsic electronic conductivity is the main disadvantage of LiFePO4 when used as a cathode material in lithium ion batteries. The paper offers experimental proofs of the theoretical prediction that fluorine doping of LiFePO4 can enhance its electrical conductivity. The LiFePO4 and fluorine-doped LiFePO4 olivine type, carbon-free powders are synthesized and examined. The crystal structure refinements in the Pnma space group reveal that doping with fluorine ions preserves the olivine structure, while reducing both the lattice parameters and the antisite defect, and increasing the crystallite size. A small amount of incorporated fluorine enhances the electrical conductivity from 4.6×10−7 S cm−1 to 2.3×10−6 S cm−1 and has a positive impact on the electrochemical performance. Several spectroscopy techniques (Mössbauer, FTIR, and Raman) reveal differences between the two powders and additionally support the findings of both the Rietveld refinement and the conductivity measurements.
PB  - Elsevier
T2  - Ceramics International
T1  - The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder
EP  - 3230
IS  - 3
SP  - 3224
VL  - 43
DO  - 10.1016/j.ceramint.2016.11.149
UR  - https://hdl.handle.net/21.15107/rcub_dais_2352
ER  - 
@article{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Cvjetićanin, Nikola and Jokić, Bojan and Umićević, Ana and Uskoković, Dragan",
year = "2017",
abstract = "Low intrinsic electronic conductivity is the main disadvantage of LiFePO4 when used as a cathode material in lithium ion batteries. The paper offers experimental proofs of the theoretical prediction that fluorine doping of LiFePO4 can enhance its electrical conductivity. The LiFePO4 and fluorine-doped LiFePO4 olivine type, carbon-free powders are synthesized and examined. The crystal structure refinements in the Pnma space group reveal that doping with fluorine ions preserves the olivine structure, while reducing both the lattice parameters and the antisite defect, and increasing the crystallite size. A small amount of incorporated fluorine enhances the electrical conductivity from 4.6×10−7 S cm−1 to 2.3×10−6 S cm−1 and has a positive impact on the electrochemical performance. Several spectroscopy techniques (Mössbauer, FTIR, and Raman) reveal differences between the two powders and additionally support the findings of both the Rietveld refinement and the conductivity measurements.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder",
pages = "3230-3224",
number = "3",
volume = "43",
doi = "10.1016/j.ceramint.2016.11.149",
url = "https://hdl.handle.net/21.15107/rcub_dais_2352"
}
Jugović, D., Mitrić, M., Milović, M., Cvjetićanin, N., Jokić, B., Umićević, A.,& Uskoković, D.. (2017). The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder. in Ceramics International
Elsevier., 43(3), 3224-3230.
https://doi.org/10.1016/j.ceramint.2016.11.149
https://hdl.handle.net/21.15107/rcub_dais_2352
Jugović D, Mitrić M, Milović M, Cvjetićanin N, Jokić B, Umićević A, Uskoković D. The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder. in Ceramics International. 2017;43(3):3224-3230.
doi:10.1016/j.ceramint.2016.11.149
https://hdl.handle.net/21.15107/rcub_dais_2352 .
Jugović, Dragana, Mitrić, Miodrag, Milović, Miloš, Cvjetićanin, Nikola, Jokić, Bojan, Umićević, Ana, Uskoković, Dragan, "The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder" in Ceramics International, 43, no. 3 (2017):3224-3230,
https://doi.org/10.1016/j.ceramint.2016.11.149 .,
https://hdl.handle.net/21.15107/rcub_dais_2352 .
20
12
24

Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures

Luković, Jelena M.; Zagorac, Dejan; Schoen, J. Christian; Zagorac, Jelena B.; Jordanov, Dragana; Volkov-Husović, Tatjana; Matović, Branko

(Wiley-VCH Verlag Gmbh, Weinheim, 2017)

TY  - JOUR
AU  - Luković, Jelena M.
AU  - Zagorac, Dejan
AU  - Schoen, J. Christian
AU  - Zagorac, Jelena B.
AU  - Jordanov, Dragana
AU  - Volkov-Husović, Tatjana
AU  - Matović, Branko
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3599
AB  - Transition metal silicides have attracted great attention due to their potential applications in microelectronics, ceramics, and the aerospace industry. In this study, experimental and theoretical investigations of tungsten based silicides were performed. Tungsten disilicide (WSi2) was synthesized by simple thermal treatment at 1350 degrees C for 4 h in an argon atmosphere. These optimal synthesis conditions were obtained by variation of temperatures and times of heating, and the structure of the final synthesized compound was determined by XRPD analysis. In addition, new modifications for WSi2 were proposed and investigated using first-principles calculations within density-functional theory (DFT). Both LDA and PBE calculations show excellent agreement with experimental observations and previous calculations for the existing modifications, where available.
PB  - Wiley-VCH Verlag Gmbh, Weinheim
T2  - Zeitschrift Fur Anorganische Und Allgemeine Chemie
T1  - Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures
EP  - 2094
IS  - 23
SP  - 2088
VL  - 643
DO  - 10.1002/zaac.201700329
ER  - 
@article{
author = "Luković, Jelena M. and Zagorac, Dejan and Schoen, J. Christian and Zagorac, Jelena B. and Jordanov, Dragana and Volkov-Husović, Tatjana and Matović, Branko",
year = "2017",
abstract = "Transition metal silicides have attracted great attention due to their potential applications in microelectronics, ceramics, and the aerospace industry. In this study, experimental and theoretical investigations of tungsten based silicides were performed. Tungsten disilicide (WSi2) was synthesized by simple thermal treatment at 1350 degrees C for 4 h in an argon atmosphere. These optimal synthesis conditions were obtained by variation of temperatures and times of heating, and the structure of the final synthesized compound was determined by XRPD analysis. In addition, new modifications for WSi2 were proposed and investigated using first-principles calculations within density-functional theory (DFT). Both LDA and PBE calculations show excellent agreement with experimental observations and previous calculations for the existing modifications, where available.",
publisher = "Wiley-VCH Verlag Gmbh, Weinheim",
journal = "Zeitschrift Fur Anorganische Und Allgemeine Chemie",
title = "Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures",
pages = "2094-2088",
number = "23",
volume = "643",
doi = "10.1002/zaac.201700329"
}
Luković, J. M., Zagorac, D., Schoen, J. C., Zagorac, J. B., Jordanov, D., Volkov-Husović, T.,& Matović, B.. (2017). Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures. in Zeitschrift Fur Anorganische Und Allgemeine Chemie
Wiley-VCH Verlag Gmbh, Weinheim., 643(23), 2088-2094.
https://doi.org/10.1002/zaac.201700329
Luković JM, Zagorac D, Schoen JC, Zagorac JB, Jordanov D, Volkov-Husović T, Matović B. Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures. in Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2017;643(23):2088-2094.
doi:10.1002/zaac.201700329 .
Luković, Jelena M., Zagorac, Dejan, Schoen, J. Christian, Zagorac, Jelena B., Jordanov, Dragana, Volkov-Husović, Tatjana, Matović, Branko, "Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures" in Zeitschrift Fur Anorganische Und Allgemeine Chemie, 643, no. 23 (2017):2088-2094,
https://doi.org/10.1002/zaac.201700329 . .
17
12
18

Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy

Jugović, Dragana; Milović, Miloš; Ivanovski, Valentin N.; Avdeev, Maxim; Dominko, Robert; Jokić, Bojan; Uskoković, Dragan

(Elsevier B.V., 2014)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Avdeev, Maxim
AU  - Dominko, Robert
AU  - Jokić, Bojan
AU  - Uskoković, Dragan
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5786
AB  - A composite powder Li2FeSiO4/C is synthesized through a solid state reaction at 750 °C. The Rietveld crystal structure refinement is done in the monoclinic P21/n space group. It is found that the crystal structure is prone to “antisite” defect where small part of iron ion occupies exclusively Li(2) crystallographic position, of two different lithium tetrahedral positions (Li(1) and Li(2)). This finding is also confirmed by Mössbauer spectroscopy study: the sextet evidenced in the Mössbauer spectrum is assigned to the iron ions positioned at the Li(2) sites. A bond-valence energy landscape calculation is used to predict the conduction pathways of lithium ions. The calculations suggest that Li conductivity is two-dimensional in the (101) plane. Upon galvanostatic cyclings the structure starts to rearrange to inverse βII polymorph.
PB  - Elsevier B.V.
T2  - Journal of Power Sources
T1  - Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy
EP  - 80
SP  - 75
VL  - 265
DO  - 10.1016/j.jpowsour.2014.04.121
UR  - https://hdl.handle.net/21.15107/rcub_dais_755
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Ivanovski, Valentin N. and Avdeev, Maxim and Dominko, Robert and Jokić, Bojan and Uskoković, Dragan",
year = "2014",
abstract = "A composite powder Li2FeSiO4/C is synthesized through a solid state reaction at 750 °C. The Rietveld crystal structure refinement is done in the monoclinic P21/n space group. It is found that the crystal structure is prone to “antisite” defect where small part of iron ion occupies exclusively Li(2) crystallographic position, of two different lithium tetrahedral positions (Li(1) and Li(2)). This finding is also confirmed by Mössbauer spectroscopy study: the sextet evidenced in the Mössbauer spectrum is assigned to the iron ions positioned at the Li(2) sites. A bond-valence energy landscape calculation is used to predict the conduction pathways of lithium ions. The calculations suggest that Li conductivity is two-dimensional in the (101) plane. Upon galvanostatic cyclings the structure starts to rearrange to inverse βII polymorph.",
publisher = "Elsevier B.V.",
journal = "Journal of Power Sources",
title = "Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy",
pages = "80-75",
volume = "265",
doi = "10.1016/j.jpowsour.2014.04.121",
url = "https://hdl.handle.net/21.15107/rcub_dais_755"
}
Jugović, D., Milović, M., Ivanovski, V. N., Avdeev, M., Dominko, R., Jokić, B.,& Uskoković, D.. (2014). Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy. in Journal of Power Sources
Elsevier B.V.., 265, 75-80.
https://doi.org/10.1016/j.jpowsour.2014.04.121
https://hdl.handle.net/21.15107/rcub_dais_755
Jugović D, Milović M, Ivanovski VN, Avdeev M, Dominko R, Jokić B, Uskoković D. Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy. in Journal of Power Sources. 2014;265:75-80.
doi:10.1016/j.jpowsour.2014.04.121
https://hdl.handle.net/21.15107/rcub_dais_755 .
Jugović, Dragana, Milović, Miloš, Ivanovski, Valentin N., Avdeev, Maxim, Dominko, Robert, Jokić, Bojan, Uskoković, Dragan, "Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy" in Journal of Power Sources, 265 (2014):75-80,
https://doi.org/10.1016/j.jpowsour.2014.04.121 .,
https://hdl.handle.net/21.15107/rcub_dais_755 .
10
12
12

Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy

Jugović, Dragana; Milović, Miloš; Ivanovski, Valentin N.; Avdeev, Maxim; Dominko, Robert; Jokić, Bojan; Uskoković, Dragan

(Elsevier B.V., 2014)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Avdeev, Maxim
AU  - Dominko, Robert
AU  - Jokić, Bojan
AU  - Uskoković, Dragan
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5787
AB  - A composite powder Li2FeSiO4/C is synthesized through a solid state reaction at 750 °C. The Rietveld crystal structure refinement is done in the monoclinic P21/n space group. It is found that the crystal structure is prone to “antisite” defect where small part of iron ion occupies exclusively Li(2) crystallographic position, of two different lithium tetrahedral positions (Li(1) and Li(2)). This finding is also confirmed by Mössbauer spectroscopy study: the sextet evidenced in the Mössbauer spectrum is assigned to the iron ions positioned at the Li(2) sites. A bond-valence energy landscape calculation is used to predict the conduction pathways of lithium ions. The calculations suggest that Li conductivity is two-dimensional in the (101) plane. Upon galvanostatic cyclings the structure starts to rearrange to inverse βII polymorph.
PB  - Elsevier B.V.
T2  - Journal of Power Sources
T1  - Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy
EP  - 80
SP  - 75
VL  - 265
DO  - 10.1016/j.jpowsour.2014.04.121
UR  - https://hdl.handle.net/21.15107/rcub_dais_542
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Ivanovski, Valentin N. and Avdeev, Maxim and Dominko, Robert and Jokić, Bojan and Uskoković, Dragan",
year = "2014",
abstract = "A composite powder Li2FeSiO4/C is synthesized through a solid state reaction at 750 °C. The Rietveld crystal structure refinement is done in the monoclinic P21/n space group. It is found that the crystal structure is prone to “antisite” defect where small part of iron ion occupies exclusively Li(2) crystallographic position, of two different lithium tetrahedral positions (Li(1) and Li(2)). This finding is also confirmed by Mössbauer spectroscopy study: the sextet evidenced in the Mössbauer spectrum is assigned to the iron ions positioned at the Li(2) sites. A bond-valence energy landscape calculation is used to predict the conduction pathways of lithium ions. The calculations suggest that Li conductivity is two-dimensional in the (101) plane. Upon galvanostatic cyclings the structure starts to rearrange to inverse βII polymorph.",
publisher = "Elsevier B.V.",
journal = "Journal of Power Sources",
title = "Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy",
pages = "80-75",
volume = "265",
doi = "10.1016/j.jpowsour.2014.04.121",
url = "https://hdl.handle.net/21.15107/rcub_dais_542"
}
Jugović, D., Milović, M., Ivanovski, V. N., Avdeev, M., Dominko, R., Jokić, B.,& Uskoković, D.. (2014). Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy. in Journal of Power Sources
Elsevier B.V.., 265, 75-80.
https://doi.org/10.1016/j.jpowsour.2014.04.121
https://hdl.handle.net/21.15107/rcub_dais_542
Jugović D, Milović M, Ivanovski VN, Avdeev M, Dominko R, Jokić B, Uskoković D. Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy. in Journal of Power Sources. 2014;265:75-80.
doi:10.1016/j.jpowsour.2014.04.121
https://hdl.handle.net/21.15107/rcub_dais_542 .
Jugović, Dragana, Milović, Miloš, Ivanovski, Valentin N., Avdeev, Maxim, Dominko, Robert, Jokić, Bojan, Uskoković, Dragan, "Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy" in Journal of Power Sources, 265 (2014):75-80,
https://doi.org/10.1016/j.jpowsour.2014.04.121 .,
https://hdl.handle.net/21.15107/rcub_dais_542 .
10
12
12